Putting cerebral malaria in the powerful spotlight

The blogosphere is a crowded place. To stand out from the pack, a lot of bustling and hustling takes place. Medical blogging is not exempt from this melee. However, in the zeal to put blog posts in the limelight, the blogger may inadvertently fixate on high profile diseases, the ones that seem to readily covet the headlines. In this way, deadlier but less ‘celebrity’ maladies are left to simmer and fester below the radar. To avoid falling into this trap, this blog endeavours, (every now and then), to shine a light on these clandestine infirmities. These are the plagues which profit by virtue of their anonymity. It is no surprise that many of these disorders are tropical diseases, and there is no sweltering equatorial beast more sinister than the ague. It is therefore in the interest of fairness and balance that we are putting cerebral malaria in the powerful spotlight.

Malaria in peripheral blood. Ed Uthman on Flickr. https://www.flickr.com/photos/euthman/6289093848

Malaria is a beast because it is endemic in many developing countries. The epidemiological map below gives a flavour of which countries receive the brunt of the miasm.

Von S. Jähnichenhttp://rbm.who.int/wmr2005/html/map1.htm and http://www.dtg.org/uploads/media/Malariakarte-DTG-2005_04.pdf, CC BY-SA 3.0, Link

Just like other parasitic infections, malaria undertakes a tortuous life cycle. It appears that it is in the nature of these scroungers to beguile and hoodwink their way to the human bloodstream. Scurrying and scampering, they transit from mosquito to man. It is to the credit of malaria-busters such as Ronald Ross that their deceptive course, pictured below, was revealed.

Life cycle of the malaria parasite. NIAID on Flickr. https://www.flickr.com/photos/niaid/20771605491

And a nasty monster is malaria. The different malaria species are transmitted by the female Anopheles mosquito (please don’t ask why). Finding warm veins irresistible, she sates her bloodthirsty cravings whilst  unknowingly transmitting the malaria buggers called sporozoites. Once they get to the liver, these transform into insatiable merozoites which are tasked with one hatchet job: detect, invade and destroy innocent hardworking red blood cells. OK, I admit that’s three hatchet jobs.

By NIAID – Malaria Parasite Connecting to Human Red Blood Cell, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=62117171

The plasmodium species vivax, ovale, and malariae can all wreak atrocious havoc, but it is falciparum that poses the greatest threat to the nervous system. This is partly because falciparum can make its host cells sticky, and in the brain, these sticky cells adhere tightly to the walls of blood vessels. This is how falciparum evades detection by the immune system, and how it escapes destruction by drugs. The sticky cells eventually clog up the cerebral circulation, resulting in the infamous malarial vasculopathy. Left untreated, cerebral malaria is sadly invariably fatal.

By Content Providers(s): CDC/James GathanyProvider Email: jdg1@cdc.govPhoto Credit: James Gathany – CDC http://phil.cdc.gov/PHIL_Images/09262002/00008/A.gambiae.1354.p_lores.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=745600

Cerebral malaria has diverse manifestations, and the most devastating include retinopathy, rigidity, ataxia (poor balance), subarachnoid haemorrhage, psychosis, hemiparesis, epilepsy, behavioural abnormalities, and coma. And this is over and above what malaria does to the other organs. The run down is very scary indeed; from anaemia to pulmonary edema, from hypoglycaemia (low glucose) to hyponatraemia (low sodium); from metabolic acidosis to hyperpyrexia (high fever), from disseminated intravascular coagulation (DIC) to adult respiratory distress syndrome (ARDS). Heartbreaking.

Malaria-infected red blood cell. NIH Image Gallery on Flickr. https://www.flickr.com/photos/nihgov/26834372607

The investigations of cerebral malaria range from the humble blood film to brain imagingTreatments include artemisinin derivatives and cinchona alkaloids. A malaria vaccine remains a dream, but not a far-off one; the RTS,S/AS01 vaccine is a promising candidate. Until this aspiration is achieved, the best hope against cerebral malaria remains prevention. The solutions are simple: basic sanitation, public education, and poverty alleviation. But the implementation seems to defy the wits of the great and the good. A lot of work remains to be done.

By Rick Fairhurst and Jordan Zuspann, National Institute of Allergy and Infectious Diseases, National Institutes of Health – https://www.flickr.com/photos/nihgov/25534997493/in/photolist-EUrx8t-CvR53a-B3Ad52-ydGygr-wZzPff-C5BN5H, Public Domain, https://commons.wikimedia.org/w/index.php?curid=49182050

Why not check out the following related posts in our other blog, Neurochecklists Updates:

The 8 most parasitic infestations of the nervous system


The 7 most ruthless bacterial infections of the nervous system


The 7 most devastating viral neurological infections