15 more creative and catchy neurology headlines for 2019

Regular visitors to this blog know that we love catchy article titles. It is always heartwarming to see how some authors create imaginative and inventive headlines. This skill involves the ability to play with words, and the capacity to be double-edged. This is why this blog keeps a lookout for fascinating neurology titles. And in line with this tradition, and in no particular order of inventiveness, here are 15 more catchy neurology titles!

By Andrikkos – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=33725735

15. Who do they think we are? Public perceptions of psychiatrists and psychologists

This paper, for some unfathomable reason, set out to ask if the public knows the difference between what psychiatrists and psychologists actually do. And the authors discovered that “there is a lack of clarity in the public mind about our roles”. More worryingly, or reassuringly (depending on your perspective), they also found out that “psychologists were perceived as friendlier and having a better rapport“. Not earth-shattering discoveries, but what a great title!

By Laurens van Lieshout – Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2059674

14. OCT as a window to the MS brain: the view becomes slightly clearer

Optical coherence tomography (OCT) is a cool tool which measures the thickness of the retinal fiber layer (RFL). And it has the habit of popping its head up in many neurological specialties. In this case, the specialty is multiple sclerosis, and the subject is how OCT influences its diagnosis and surveillance. Surely a window into the brain is easier to achieve than one into the soul.

Optical coherence tomography of my retina. Brewbooks on Flickr. https://www.flickr.com/photos/brewbooks/8463332137

13. A little man of some importance 

The homonculus is the grotesque representation of the body on the surface or cortex of the brain. This paper reviews how formidable neurosurgeons such as Wilder Penfield worked out the disproportionate dimensions of this diminutive but influential man. He (always a man for some reason) has giant hands, a super-sized mouth, very small legs, and a miniature trunk. The clever brain doesn’t readily allocate its resources to large body parts that perform no complex functions! But be warned, this article is no light-weight reading!

The Homunculus in Crystal Palace (Moncton). Mark Blevis on Flickr. https://www.flickr.com/photos/electricsky/1298772544

12. Brain-focussed ultrasound: what’s the “FUS” all about? 

This title is a play on words around MR-guided focussed ultrasound surgery (MRgFUS), an emerging technique for treating disorders such as essential tremor and Parkinson’s disease (PD). This review looks at the controversial fuss that this technique has evoked.

By Luis Lima89989 – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19162929

11. The Masks of Identities: Who’s Who? Delusional Misidentification Syndromes

This paper explores the interesting subject of delusional misidentification syndromes (DMSs). The authors argue that few concepts in psychiatry can be as confusing as DMSs. And they did an excellent job of clearing our befuddlement around delusions such as Capgras and Fregoli. Very apt title, very interesting read.

no identity. HaPe-Gera on Flickr. https://www.flickr.com/photos/hape_gera/2929195528

 

10. Waking up to sleeping sickness.

This title belongs to a review of trypanosomiasis, aka sleeping sickness. It is a superb play on words, one that evokes several levels of meaning. It is simple and yet complex at the same time. Great imagination.

https://picryl.com/media/the-sleeping-sickness-gordon-ross

09. Brains and Brawn: Toxoplasma Infections of the Central Nervous System and Skeletal Muscle

This paper discusses two parts of nervous system that are affected by toxoplasmosis. Playing on the symbolic  contradiction between intellect and strength, the authors show how toxoplasmosis is an ecumenical abuser: it metes out the same fate to both brain and brawn.

Brain vs. Brawn. Yau Hoong Tang on Flickr. https://www.flickr.com/photos/tangyauhoong/4474921735

08. Shedding light on photophobia

A slightly paradoxical title this one. Ponder on it just a little more! And then explore the excellent paper shedding light on a condition that is averse to light.

Photophobia (light sensitivity). Joana Roja on Flickr. https://www.flickr.com/photos/cats_mom/2772386028/

07. No laughing matter: subacute degeneration of the spinal cord due to nitrous oxide inhalation

Nitrous oxide, or laughing gas, is now “the seventh most commonly used recreational drug”. But those who pop it do so oblivious of the risk of subacute combined degeneration. This damage to the upper spinal cord results from nitrous oxide-induced depletion of Vitamin B1 (thiamine). Not a laughing matter at all!

Empty Laughing Gas Canisters. Promo Cymru on Flickr. https://www.flickr.com/photos/promocymru/18957223365

06. To scan or not to scan: DaT is the question

Dopamine transport (DaT) scan is a useful brain imaging tests that helps to support the diagnosis of Parkinson’s disease and other disorders which disrupt the dopamine pathways in the brain. It is particularly helpful in ruling out mimics of Parkinson’s disease such as essential tremor. When to request a DaT scan is however a tricky question in practice. This paper, with its Shakespearean twist, looks at the reliability of DaT scans.

Dopamine. John Lester on Flickr. https://www.flickr.com/photos/pathfinderlinden/211882099

05. TauBI or not TauBI: what was the question?

It should be no surprise if Shakespeare rears his head more than once in this blog post. Not when the wordsmith is such a veritable source of inspiration for those struggling to invent catchy titles. This paper looks at taupathy, a neurodegeneration as tragic as Hamlet. It particularly comments on an unusual taupathy, one induced by traumatic brain injury. Curious.

By Lafayette Photo, London – This image is available from the United States Library of Congress‘s Prints and Photographs divisionunder the digital ID cph.3g06529.This tag does not indicate the copyright status of the attached work. A normal copyright tag is still required. See Commons:Licensing for more information., Public Domain, Link

04. Mind the Brain: Stroke Risk in Young Adults With Coarctation of the Aorta

What better way to call attention to a serious complication than a catchy title like this one. This paper highlights the neurological complications of coarctation of the aorta, a serious congenital cardiovascular disease. And the key concerns here are the risks of stroke and cerebral aneurysms. Cardiologists, mind the brain!

Own work assumed (based on copyright claims)., Public Domain, https://commons.wikimedia.org/w/index.php?curid=803943

03. Diabetes and Parkinson disease: a sweet spot?

This paper reviews the unexpected biochemical links between diabetes and Parkinson’s disease. And this relationship is assuming a rather large dimension. Why, for example, are there so many insulin receptors in the power house of Parkinson’s disease, the substantia nigra? A sweet curiosity.

Insulin bubble. Sprogz on Flickr. https://www.flickr.com/photos/sprogz/5606839532

02. PFO closure for secondary stroke prevention: is the discussion closed?

The foraman ovale is a physiological hole-in-the-heart which should close up once a baby is born. A patent foramen ovale (PFO) results when this hole refuses to shut up. PFOs enable leg clots to traverse the heart and cause strokes in the brain. This paper reviews the evidence that surgically closing PFOs prevents stroke. Common sense says it should, but science demands proof. And the authors assert that they have it all nicely tied up. Hmmm.

By Kjetil Lenes – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3705964

01. Closure of patent foramen ovale in “cryptogenic” stroke: Has the story come to an end?

Not to be beaten in the catchy title race is another brilliant PFO review article. Why do I feel the answer here is ‘no’? This is science after all.

https://www.flickr.com/photos/fliegender/293340835

 

What’s happening at the cutting edge of MSA?

Multiple system atrophy (MSA) is a mimic of Parkinson’s disease (PD). Neurologists suspect MSA in people with apparent PD who, in addition, have other defining features. In many people with MSA their prominent symptoms are cerebellar dysfunction (MSA-C), and these have unsteadiness and incoordination of movements. In other people with MSA the predominant symptoms are of Parkinsonism, and this type is called MSA-P.

By Images are generated by Life Science Databases(LSDB). - from Anatomography[1] website maintained by Life Science Databases(LSDB).You can get this image through URL below. 次のアドレスからこのファイルで使用している画像を取得できますURL., CC BY-SA 2.1 jp, https://commons.wikimedia.org/w/index.php?curid=7769113
By Images are generated by Life Science Databases(LSDB). – from Anatomography[1] website maintained by Life Science Databases(LSDB).You can get this image through URL below. 次のアドレスからこのファイルで使用している画像を取得できますURL., CC BY-SA 2.1 jp, https://commons.wikimedia.org/w/index.php?curid=7769113

Making a diagnosis of MSA is gratifying, but treating it is frustrating. Only about a third of people with MSA respond to the standard PD medication, Levodopa. Furthermore, MSA confers a shortened life expectancy. It is therefore important that neurologists resolve the mystery of MSA, and they are indeed hacking away at its cutting-edge.

Genetics

The general assumption is that MSA is acquired rather than inherited. This assumption did not dissuade neurologists from looking for MSA genetic risk factors, and their quest has led to the discovery of a candidate MSA gene. This is called coenzyme Q2 4-hydroxybenzoate polyprenyltransferase, or simply the COQ2 gene. This gene was first touted in a 2013 paper in the New England Journal of Medicine titled Mutations in COQ2 in Familial and Sporadic Multiple-System Atrophy. Using whole genome sequencing, the authors identified COQ2 gene mutations in both sporadic and familial cases of MSA. Another paper in Neurology in 2016, titled New susceptible variant of COQ2 gene in Japanese patients with sporadic multiple system atrophy, reported that the COQ2 gene mutation is more likely in MSA-C than in other types of MSA.

You may explore the genetics of MSA further in this paper in Neurobiology of Aging titled Genetic players in multiple system atrophy: unfolding the nature of the beast.

Differential diagnoses

When neurologists are considering the diagnosis of MSA, they come up against many disorders jostling to confuse them. There are of course PD and related conditions such as progressive supranuclear palsy (PSP). There is also the endless list of conditions which cause either cerebellar or autonomic dysfunction. The neurologist is usually cautious to exclude these known differential diagnoses of MSA. But what happens when they come across a mimic that isn’t in the textbooks? Such is the situation with this case report published in Movement Disorders of Concomitant Facioscapulohumeral Muscular Dystrophy and Parkinsonism Mimicking Multiple System Atrophy.

This case defies the law of parsimony, Occam’s razor. To paraphrase, this law states that a single diagnosis is the most likely cause for a patient’s clinical features. Clearly in some cases such as this, the neurologist must disregard William of Occam, and make multiple diagnoses.

Investigations
Hot cross bun. Liliana Fuchs on Flikr. https://www.flickr.com/photos/akane86/5208128379
Hot cross bun. Liliana Fuchs on Flikr. https://www.flickr.com/photos/akane86/5208128379

Neurologists often request some tests to confirm their suspicion of MSA. The usual investigation is the painless but claustrophobic magnetic resonance imaging (MRI). In MSA, this shows shrinking or atrophy of the cerebellum. It may also show the hot cross bun sign, a characteristic pattern of shrinking of the chunky middle section of the brainstem, the pons.

Big MRI. liz west on Flikr. https://www.flickr.com/photos/calliope/223220955
Big MRI. liz west on Flikr. https://www.flickr.com/photos/calliope/223220955

Some neurologists are not satisfied with this culinary sign and have explored other radiological indicators of MSA. They studied an MRI technique called diffusion tensor imaging tractography (DTI tractography) and reported their findings in the Journal of Neurology. Their paper titled Characteristic diffusion tensor tractography in multiple system atrophy reports that DTI tractography appears to distinguish MSA-C from other causes of cerebellar dysfunction.

Biomarkers

Biomarkers again, so soon after my previous blog post, What is the state of parkinson’s disease biomarkers. The whole idea behind biomarkers is their potential to make for an easier and earlier diagnosis. They are all the rage in neurodegenerative diseases, and MSA can’t be an exception. The first potential MSA biomarker is α-synuclein, the abnormal protein that is found in the brains of people with PD, MSA and Lewy body disease (LBD), the so-called synucleopathies. Researchers have now discovered that α-synuclein also resides in the skin. They carried out skin biopsies in people with PD and MSA and found skin deposits of α-synuclein in both. Writing in the journal Movement Disorders, they showed that in PD, the deposits were mainly in autonomic nerve fibers, whilst in MSA they were in the larger somatic nerves. Time to brush up those skin biopsy skills!

The second potential biomarker is optical coherence tomography (OCT). This is reported in Movement Disorders in a paper titled Progressive retinal structure abnormalities in multiple system atrophy. The authors used OCT to measure the thickness of the retina of the eye. They demonstrated that the retina is thin in both PD and MSA, but the thinning advances more rapidly in MSA than in PD. If confirmed, this would be a handy, and painless, biomarker.

Potential treatments
Syringe and vaccine. Niaid on Flikr. https://www.flickr.com/photos/niaid/14329622976
Syringe and vaccine. Niaid on Flikr. https://www.flickr.com/photos/niaid/14329622976

The objective of all research is to arrive at effective treatments. There is unfortunately no bright treatment looming in the MSA horizon because the research so far have produced disappointing results. Such failures include Rifampicin, Fluoxetine and Lithium. There is however no scarcity of potential therapeutic candidates. The most exciting is a vaccine against MSA. For this and other research efforts read this excellent review in Advances in Clinical Neurology and Rehabilitation (ACNR) titled Updates on potential therapeutic targets in MSA.

 

 

What is the state of Parkinson’s disease biomarkers?

Neurologists are always cautious when making a diagnosis of Parkinson’s disease (PD). This shouldn’t be the case because PD is not difficult to recognise-at least not most of the time. For one, PD has classical clinical signs- the trio of resting tremor, slow movements (bradykinesia), and stiffness (rigidity). For another, it is asymmetrical, starting and remaining worse on one side of the body.

All these features are however vague in the early stages of PD. To make matters worse, there are many other diseases that mimic PD. These include multiple system atrophy (MSA), progressive supranuclear palsy (PSP), Lewy body disease (LBD), corticobasal degeneration (CBD), and even SWEDDS (if it exists at all!). And always lurking in the shadows, waiting to catch the neurologist out, are dystonic tremor and essential tremor.

Marking Parkinson's. EMSL on Flikr. https://www.flickr.com/photos/emsl/4704802544
Marking Parkinson’s. EMSL on Flikr. https://www.flickr.com/photos/emsl/4704802544

 

These PD mimics challenge and intrigue neurologists in equal measure. They contribute to the delayed and missed diagnosis of PD in 20% of cases. Are there shortcuts out there to improve our diagnostic accuracy? A simple test perhaps? Maybe some biomarker? Here are 6 budding contestants.

1. Dopamine transporter (DAT) scans

Dopamine. John Lester on Flikr. https://www.flickr.com/photos/pathfinderlinden/211882099/in/photolist-jHXaD
Dopamine. John Lester on Flikr. https://www.flickr.com/photos/pathfinderlinden/211882099/in/photolist-jHXaD

DAT scans are now in general, even if not universal, use. They help to distinguish PD from conditions such as essential tremor or drug-induced Parkinsonism. DAT scans are however expensive, and they do not distinguish PD from many of its other mimics such as MSA, PSP, (you know the roll call). There are indications that DAT scans may be normal in cases of PD. We therefore clearly need better, cheaper (and newer!) PD biomarkers than DAT scans.

2. Cerebrospinal fluid (CSF) biomarkers

© Nevit Dilmen [CC BY-SA 3.0 or GFDL], via Wikimedia Commons
© Nevit Dilmen [CC BY-SA 3.0 or GFDL], via Wikimedia Commons
Perhaps the answer is in a spinal tap or lumbar puncture (LP). A lumbar puncture is a simple but dreaded test. It is however useful for giving us access to the cerebrospinal fluid (CSF) that bathes the brain and spinal cord. Analysis of the CSF often gives the game away in many neurological disorders. It is not surprising therefore that researchers looked at a panel of nine CSF biomarkers that may identify PD. The paper, published in the JNNP, suggests that there may be biomarker roles for neurofilament light chain (NFL), soluble amyloid precursor protein (sAPP), and α-synuclein (of course). CSF α-synuclein is the focus of another paper in BioMedCentral which reports that one form, oligomeric α-synuclein, is the one to watch out for.

Another set of CSF biomarkers is related to blood vessel formation (angiogenesis). I came across this in a paper in Neurology titled Increased CSF biomarkers of angiogenesis in Parkinson disease. The authors are referring to vascular endothelial growth factor (VEGF) and its receptors VEGFR-1 and VEGFR-2. Others are placental growth factor (PlGF), angiopoietin 2 (Ang2), and interleukin-8. Enough to keep researchers busy for a while.

3. Peripheral blood biomarkers

Even the most compliant patient would prefer to have a blood test rather than a spinal tap. Thankfully there are some blood-based biomarkers in the offing. One set are called α-synuclein blood transcripts (SNCA transcripts). The authors of an article published in the journal Brain report that SNCA transcripts are consistently reduced in the blood of people with early PD. The accompanying editorial however cautions on the utility of these SNCA transcripts because low levels are also seen in some people who do not have PD. The true value of SNCA transcripts may lie in their ability to predict cognitive decline, but how many people really want to know that?

Other potential blood based biomarkers mentioned are uric acid and epidermal growth factor (EGF).

4. Retinal optical coherence tomography (OCT)

CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=525623
CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=525623

Even better than blood and spinal fluid biomarkers would be something totally painless. And to the rescue comes retinal optical coherence tomography (OCT). OCT uses light waves to take pictures of the retina. This allows measurement of the size of different parts of the retina; the area of interest in PD is called the foveal pit. A paper in Movement Disorders reports that OCT is a sensitive marker of PD. The authors show that the foveal pit in PD has a unique form; it is shallow in the superior-inferior and the nasal-temporal slopes. Perhaps neurologists will soon be running to ophthalmologists, cap-in-hand, to save their blushes.

5. Salivary gland α-synuclein

Public Domain, https://commons.wikimedia.org/w/index.php?curid=1074079
Public Domain, https://commons.wikimedia.org/w/index.php?curid=1074079

 

Back to painful biomarkers I’m afraid, all in aid of clinching an early diagnosis you must understand. This time it’s salivary gland biopsy. Some eager researchers took biopsy samples of the submandibular salivary glands of people with early PD. They then looked for, and found, α-synuclein in about 75% of them. Their paper is published in Movement Disorders titled Peripheral Synucleinopathy in Early Parkinson’s Disease: Submandibular Gland Needle Biopsy Findings. Unfortunately  20% of control subjects without PD also had α-synuclein in their salivary glands. Could these people have pre-manifest PD? We must await larger and longer studies before we start needling away at the salivary glands of the worried-well.

6. Intestinal tract α-synuclein

What if the answer is not in the salivary glands? Then we should be really afraid because α-synuclein has popped up in …the intestines. A review paper in Movement Disorders describes this in the brilliantly titled Gut Feelings About α-Synuclein in Gastrointestinal Biopsies: Biomarker in the Making? Another paper published in PLOS One takes things further, reporting an association between intestinal α-synuclein with increased gut permeability. I’ll make no further comments on the gut; not with the threat of cameras and scopes going up all sorts of body openings.

α-synuclein staining of a Lewy body. By Marvin 101 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7533521
α-synuclein staining of a Lewy body. By Marvin 101Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7533521

Below is a link to an open access article in Movement Disorders with more potential PD biomarkers

Are there any other biomarkers out there? Please leave a comment.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

neurochecklists-image