The 13 most dreadful neurological disorders…and the groups standing up to them

Neurology embodies some of the most dreadful diseases known to man. Every neurological disorder is disheartening, each characterised by unique frustrations for patients and their families. It is difficult to quantify the distress and misery these afflictions impose on their victims, and even harder to appreciate the despair and anguish they evoke in those who care for them.

Brain Art. Ars Electronica on Flikr. https://www.flickr.com/photos/arselectronica/7773544158

It is clearly hard to compare the impact of different neurological diseases. Some neurological disorders however stand out because of the consternation their names evoke, and the terror that follows in their wake. These diseases come with unimaginable physical and psychological burdens, and crushing demands on human and material resources. They impose either a debilitating morbidity, or a hasty mortality.

Neural pathways in the brain. NICHD on Flikr. https://www.flickr.com/photos/nichd/16672073333

The nervous system ailments in the list below pose exacting therapeutic challenges, resistant as they are to all attempts at treatment or cure. This list sets out to emphasise the urgency for neuroscience to find a remedy for each of them, but it does not intend to belittle the horror of the disorders omitted from it. The choice of the number 13 is, sadly, self-evident. Here then are the top 13 most dreadful neurological disorders…all with gold links to the associations helping to defeat them.

Working Brain. Gontzal García del Caño on Flikr. https://www.flickr.com/photos/euskalanato/2052487054

Ataxia

Ataxia, in lay terms, is incoordination. This typically manifests as an unsteady gait and clumsiness. Ataxia converts all activities of daily living into burdensome chores. Whilst many types of ataxia are preventable or reversible, primary ataxias are progressive and carry a dismal outlook. In this category are Spinocerebellar ataxia (SCA)Friedreich’s ataxia, and Ataxia telangiectasia. You may read more about ataxia in these previous blog posts: The 43 spinocerebellar ataxias: the complete checklistsOld drugs, new roles?, and Will Riluzole really be good for cerebellar ataxia?

Brain tumours

Brain cancers hardly need any description. They are either primary, arising from the brain cells, or metastatic, spreading to the brain from other organs. Some primary brain cancers, such as meningiomas and pituitary tumours, are, relatively, treatable. Many others are unfortunately ominously malignant. The most dreadful in this category is surely the spine-chilling glioblastoma multiforme. You may check out these previous blog posts for more on these tumuors: Calming the rage of brain tumours: hope for a dreaded cancerMaggots, viruses and lasers: some innovations for brain tumoursand Are steroids detrimental to survival in brain tumours?

Peripheral neuropathy

Peripheral neuropathy is ubiquitous in the neurology clinic. Neuropathy may result from reversible situations such as overindulgence in alcohol, uncontrolled diabetes, or Vitamin B12 deficiency. Neuropathy is often just a minor inconvenience when it manifests with sensory symptoms such as tingling and numbness. It may however be debilitating when it presents as limb paralysis, or complicated by major skeletal deformities. At the severe end of the spectrum of neuropathy are the hereditary forms such as Charcot Marie Tooth disease (CMT) and Familial amyloid polyneuropathy. Read more in these blog posts: The 52 variants of CMT… and their practical checklistsWhat’s looming at the frontline of peripheral neuropathy? and Will a pill really hold the cure for CMT?

Creutzfeldt Jakob disease (CJD)

CJD is the most iconic of the prion diseases. These disorders are as horrendous as they are enigmatic, defying categorisation as either infections or neurodegenerative diseases. More puzzling is their ability to be either hereditary and acquired. CJD exists in the classic or variant form, but both share a relentlessly rapid course, and a uniformly fatal end. You may read more in these previous blog posts titled Final day of ANA 2015- Prions center stage, and What are the links between Prion diseases and Parkinsonian disorders?

Dementia

Dementia is the scourge of longevity. Its name strikes terror because it insidiously colonises the cells that make us who we are. The most prominent dementia is Alzheimer’s disease, but it has equally dreadful companions such as Frontotemporal dementia (FTD) and Dementia with Lewy bodies (DLB). Read more on dementia in these blog posts: How bright is the future for Alzheimer’s disease?Alzheimer’s disease: a few curious things, and Alzheimers disease and its promising links with diabetes.

Dystonia

Dystonia marks its presence by distressing movements and painful postures. At its most benign, dystonia is only a twitch of the eyelid (blepharospasm) or a flicker of one side of the face (hemifacial spasm). At the extreme end, it produces continuous twisting and swirling motions, often defying all treatments. The causes of dystonia are legion, but the primary dystonias stand out by their hereditary transmission and marked severity. Read more on dystonia in these blog posts: Why does dystonia fascinate and challenge neurology? and Making sense of the dystonias: the practical checklists.

Huntington’s disease (HD)

Huntington’s disease is an iconic eponymous neurological disorder which is marked by the vicious triumvirate of chorea, dementia, and a positive family history. It is an awful condition, often driving its victims to suicide. It is a so-called trinucleotide repeat expansion disorder, implying that successive generations manifest the disease at an earlier age, and in more severe forms (genetic anticipation). You may read more on HD in the previous blog post titled What are the prospects of stamping out Huntington’s disease? 

Motor neurone disease (MND) 

Also known as Amyotrophic lateral sclerosis (ALS), MND is simply devastating. Recognising no anatomical boundaries, it ravages the central and peripheral nervous systems equally. MND creeps up on the neurones and causes early muscle twitching (fasciculations) and cramps. It then gradually devours the nerves resulting in muscle wasting, loss of speech, ineffectual breathing, and impaired swallowing. It is no wonder that one of the most read post on this blog is titled Is neurology research finally breaking the resolve of MND? Other previous blog posts on MND are The emerging links between depression and MNDWhat is the relationship of MND and cancer?Does diabetes protect from MND?, and MND and funeral directors-really?

Multiple sclerosis (MS)

Multiple sclerosis is a very common disease, and gets more common the further away you get from the equator. It is the subject of intense research because of the devastation it foists on predominantly young people. Many drugs now ameliorate, and even seem to halt the progression of, relapsing remitting MS (RRMS). This is however not the case with primary progressive MS (PPMS) which, until the introduction of ocrelizumab, defied all treatments. There are many contenders vying for the cause of MS, but the reason nerves in the central nervous system inexplicably lose their myelin sheaths remains elusive. You may read more on MS in these blog posts: The emerging progress from the world of MS , What are the remarkable drugs which have transformed the treatment of MS?, and Is low vitamin D a cause of multiple sclerosis?

Muscular dystrophy 

Muscular dystrophy is an umbrella term that covers a diverse range of inherited muscle diseases. The most devastating, on account of its early onset and unrelenting progression, is Duchenne muscular dystrophy (DMD). Adult neurologists will be more familiar with late onset muscular dystrophies such as Myotonic dystrophy and Facioscapulohumeral muscular dystrophy (FSHD). Read more on muscular dystrophy in these previous blog posts: How is neurology stamping out the anguish of Duchenne? and The A–Z of limb girdle muscular dystrophy (LGMD).

Rabies

Rabies, a rhabdovirus, is a zoonosis-it is transmitted to man by a wide range of animals such as dogs, bats, racoons, and skunks. It is the quintessential deadly neurological disease, popularised by the Steven King book and film, Cujo. Rabies manifests either as the encephalitic (furious) or the paralytic (dumb) forms. It wreaks havoc by causing irritability, hydrophobia (fear of water),  excessive sweating, altered consciousness, and inevitably death. Whilst there are vaccines to protect against rabies, a cure has eluded neuroscientists. This blog is yet to do justice to rabies but it is, at least, listed in the post titled What are the most iconic neurological disorders? But you could better by checking neurochecklists for details of the clinical features and management of rabies.

Spinal cord injury

Nothing is quite as heart-wrenching as the sudden loss of body function that results from spinal cord trauma. This often causes paralysis of both legs (paraplegia), or all four limbs (quadriplegia). This life-changing disorder is often accompanied by loss of control over bowel and bladder functions, and complications such as bed sores and painful spasms. You may read about the heroic efforts to treat spinal cord injury in the blog posts titled 6 innovations in the treatment of spinal cord injury and Head transplant, anyone?

Tetanus

Tetanus is an eminently preventable disease, now almost wiped out in developed countries by simple immunisation. It however continues its pillage and plunder in the developing world. It strikes young and old alike, often invading the body through innocuous wounds. Tetanus is caused by tetanospasmin and tetanolysin, the deadly toxins of the bacterium Clostridium tetani. The disease is classified as generalised, localised, cephalic, or neonatal tetanus. It is characterised by painful spasms which manifest as lockjaw (trismus), facial contortions (risus sardonicus), trunkal rigidity (opisthotonus), and vocal cord spasms (laryngospasm). The disease is awfully distressing and, when advanced, untreatable. It is a stain on the world that this avoidable disorder continuous to threaten a large number of its inhabitants. Check neurochecklists for more on the pathology, clinical features, and management of tetanus.

 

Light brain. Mario D’Amore on Flikr. https://www.flickr.com/photos/kidpixo/3470448888

As for all lists, this will surely be subject to debate, or perhaps some healthy controversy. Please leave a comment.

Why is CLIPPERS breaking its shackles to the pons?

CLIPPERS is unusual enough you would think. Nothing to do with barbing and shearing I assure you. CLIPPERS stands for Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids. The striking feature of CLIPPERS is inflammation in the pons, the chunky middle part of the brainstem. This distinguishes it from other neurological inflammatory disorders such as multiple sclerosis (MS) and neuromyelitis optica (NMO).

By Images are generated by Life Science Databases(LSDB). - from Anatomography[1] website maintained by Life Science Databases(LSDB).You can get this image through URL below. 次のアドレスからこのファイルで使用している画像を取得できますURL., CC BY-SA 2.1 jp, Link
By Images are generated by Life Science Databases(LSDB). – from Anatomography[1] website maintained by Life Science Databases(LSDB).You can get this image through URL below. 次のアドレスからこのファイルで使用している画像を取得できますURL., CC BY-SA 2.1 jp, Link

CLIPPERS has however now broken loose from its shackles to the pons, and is spreading down into the spinal cord. Sacrilege you might say.

By BruceBlaus - Own work, CC BY 3.0, Link
By BruceBlausOwn work, CC BY 3.0, Link

This disruptive and subvertive action was reported in two prestigious neurology journals. The first paper in the journal, Neurology, is titled CLIPPERS with diffuse white matter and longitudinally extensive spinal cord involvement. The second is reported in the journal, Brain, as CLIPPERS with lesions distributed predominantly in spinal cord.

"What's in a name?" Jack Dorsey on Flikr. https://www.flickr.com/photos/jackdorsey/170257936
“What’s in a name?” Jack Dorsey on Flikr. https://www.flickr.com/photos/jackdorsey/170257936

What is it about neurological inflammatory disorders that makes them so rebellious? Why do they defy convention and disregard their defining features. I discussed a similar phenomenon in my previous blog post titled Why is neuromyelitis optica (NMO) endlessly surprising neurology? NMO refused to play by the rules and was punished by having it’s named changed to NMOSD. Perhaps it’s time for CLIPPERS to suffer the same fate….starting with a shorter acronym perhaps?

 

Check out more on CLIPPERS in Neurochecklists

_________________________________________________________________________

neurochecklists-image

What are the new diseases emerging in neurology?

Medical futurists predict that scientific advances will lead to more precise definition of diseases. This will inevitably result in the emergence of more diseases and fewer syndromes. This case is made very eloquently in the book, The Innovators Prescription. Many neurological disorders currently wallow at the intuitive end of medical practice, and their journey towards precision medicine is painfully too slow. Neurology therefore has a great potential for the emergence of new disorders.

https://pixabay.com/en/pie-chart-diagram-statistics-parts-149727/
https://pixabay.com/en/pie-chart-diagram-statistics-parts-149727/

In the ‘good old days’, many diseases were discovered by individual observers working alone, and the diseases were named after them. In this way, famous diseases were named after people such as James Parkinson, Alois Alzheimer, and George Huntington. For diseases discovered by two or three people, it didn’t take a great stretch of the imagination to come up with double-barrelled names such as Guillain-Barre syndrome (GBS) or Lambert-Eaton myasthenic syndrome (LEMS).

By uncredited - Images from the History of Medicine (NLM) [1], Public Domain, https://commons.wikimedia.org/w/index.php?curid=11648572
By uncredited – Images from the History of Medicine (NLM) [1], Public Domain, https://commons.wikimedia.org/w/index.php?curid=11648572
Today, however, new diseases emerge as a result of advances made by large collaborations, working across continents. These new diseases are named after the pathological appearance or metabolic pathways involved (as it will require an act of genius to create eponymous syndromes to cater for all the scientists and clinicians involved in these multi-centre trials). This is unfortunately why new disorders now have very complex names and acronyms. Take, for examples, chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) and chronic relapsing inflammatory optic neuropathy (CRION). It is a sign that we should expect new neurological diseases to be baptised with more descriptive, but tongue-twisting, names.

 

https://pixabay.com/en/letters-a-abc-alphabet-literacy-67046/
https://pixabay.com/en/letters-a-abc-alphabet-literacy-67046/

New disease categories emerge in different ways. One is the emergence of a new disorder from scratch, with no antecedents whatsoever. Such was the case with autoimmune encephalitis, a category which has come from relative obscurity to occupy the centre stage of eminently treatable diseases. I have posted on this previously as What’s evolving at the cutting edge of autoimmune neurology and What are the dreadful autoimmune disorders that plague neurology? Other disease categories form when different diseases merge into a completely new disease category, or when a previously minor diseases mature and stand on their own feet. These are the stuff of my top 8 emerging neurological disorders.

 

By Photo (c)2007 Derek Ramsey (Ram-Man) - Self-photographed, CC BY-SA 2.5, Link
By Photo (c)2007 Derek Ramsey (Ram-Man) – Self-photographed, CC BY-SA 2.5, Link

1. mTORopathy

This huge monster is ‘threatening’ to bring together, under one roof, diverse disorders such as tuberous sclerosis complex, epilepsy, autism, traumatic brain injury, brain tumours, and dementia. You may explore this further in my previous blog post titled mTORopathy: an emerging buzzword for neurology.

Merging bubbles. Charlie Reece on Flikr. https://www.flickr.com/photos/charliereece/777487250
Merging bubbles. Charlie Reece on Flikr. https://www.flickr.com/photos/charliereece/777487250

2. IgG4-related autoimmune diseases

This new group of neurological diseases is threatening to disrupt the easy distinction between several neurological disorders such as myasthenia gravis (MG), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), and Guillain Barre syndrome (GBS). It even includes the newly described IgLON 5 antibody disorder, something I blogged about as IgLON5: a new antibody disorder for neurologists. You may explore IgG4-related disorders in this paper titled The expanding field of IgG4-mediated neurological autoimmune disorders. 

By Aida Pitarch - Own work, CC BY-SA 4.0, Link
By Aida PitarchOwn work, CC BY-SA 4.0, Link

3. Anti-MOG antibody disorders

Now, neurologists have always known about MOG, mostly as a minor bit player, an extra, so to say. No more, it is now all grown up and matured. And the growth is fast and involves many inflammatory demyelinating disease of the CNS such as fulminant demyelinating encephalomyelitis and multiphasic disseminated encephalomyelitis. How far will it go?

http://thebluediamondgallery.com/a/autoimmune.html
http://thebluediamondgallery.com/a/autoimmune.html

4. Hepatitis E virus related neurological disorders

A field which is spurning new neurological disorders is neurological infections, and Hepatitis E virus (HEV) is in the forefront. We are now increasingly recognising diverse Hepatitis E related neurological disorders. HEV has now been linked to diseases such as Guillain Barre syndrome (GBS) and brachial neuritis. And the foremost researcher in this area is Harry Dalton, a hepatologist working from Cornwall, not far from me! And Harry will be presenting at the next WESAN conference in Exeter in November 2017.

By Transferred from en.wikipedia to Commons.This media comes from the Centers for Disease Control and Prevention's Public Health Image Library (PHIL), with identification number #5605.Note: Not all PHIL images are public domain; be sure to check copyright status and credit authors and content providers.English | Slovenščina | +/−, Public Domain, Link
By Transferred from en.wikipedia to Commons.This media comes from the Centers for Disease Control and Prevention‘s Public Health Image Library (PHIL), with identification number #5605.Note: Not all PHIL images are public domain; be sure to check copyright status and credit authors and content providers.English | Slovenščina | +/−, Public Domain, Link

5. Zika virus

Zika virus is another novel infection with prominent neurological manifestations. We are learning more about it every day, and you may check my previous blog post on this, titled 20 things we now know for certain about the Zika virus.

By Manuel Almagro Rivas - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=47941048
By Manuel Almagro RivasOwn work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=47941048

6. Multisystem proteinopathy

Multisystem proteinopathy is a genetic disorder which affects muscles and bone, in addition to the nervous system. It is associated with Paget’s disease of the bone and inclusion body myositis, with implications for motor neurone disease (MND) and frontotemporal dementia (FTD). Quite a hydra-headed monster it seems, all quite complex, and perhaps one strictly for the experts.

Hydra. Andrew Jian on Flikr. https://www.flickr.com/photos/andrew_jian/475479747
Hydra. Andrew Jian on Flikr. https://www.flickr.com/photos/andrew_jian/475479747

7. GLUT-1 deficiency syndromes

GLUT-1 stands for glucose transporter type 1. Deficiency of GLUT-1 results in impaired transportation of glucose into the brainGLUT-1 deficiency syndrome presents with a variety of neurological features such as dystonia, epilepsy, ataxia, chorea, and a host of epilepsy types. It starts in infancy and is characterised by a low level of glucose and lactic acid in the cerebrospinal fluid. Expect to hear more on this in the near future.

Sugar Cubes. David pacey on Flikr. https://www.flickr.com/photos/63723146@N08/7164573186
Sugar Cubes. David pacey on Flikr. https://www.flickr.com/photos/63723146@N08/7164573186

8. Progressive Solitary Sclerosis

And this is my favourite paradigm shifter. Neurologists often see people with brain inflammatory lesions and struggle to decide if they fulfil the criteria for multiple sclerosis (MS). The current threshold for concern is when there have been two clinical events consistent with inflammation of the nervous system, or their MRI scan shows involvement of at least two different sites of the nervous system. Well, dot counting may soon be over, going by this paper in Neurology titled Progressive solitary sclerosis: gradual motor impairment from a single CNS demyelinating lesion. The authors identified 30 people with progressive clinical impairment arising from a single inflammatory nervous system lesion. The authors were convinced enough to recommend the inclusion of this new entity, progressive solitary sclerosis, in future classifications of inflammatory disorders of the central nervous system. Move over progressive MS, here comes progressive SS. Neurologists will surely have their job cut out for them.

Solitary tree at Sunset. epcp on Flikr. https://www.flickr.com/photos/epcprince/3418260382
Solitary tree at Sunset. epcp on Flikr. https://www.flickr.com/photos/epcprince/3418260382

Do you have any suggestions of emerging neurological disorders? Please leave a comment

=========================================================================

PS. These disorders are all covered in neurochecklists

screen-shot-2016-12-19-at-18-32-39

What are the remarkable drugs which have transformed the treatment of MS?

Multiple sclerosis (MS) is a common and blighting neurological disease. It frequently targets young people, often with disabling effects. It may affect any part of the central nervous system, and it manifests with relapsing or steadily progressive clinical features.

"Carswell-Multiple Sclerosis2" by derivative work: Garrondo (talk)Carswell-Multiple_Sclerosis.jpg: Robert Carswell (1793–1857) - Carswell-Multiple_Sclerosis.jpg. Licensed under Public Domain via Commons.
Carswell-Multiple Sclerosis2” by derivative work: Garrondo (talk)Carswell-Multiple_Sclerosis.jpg: Robert Carswell (1793–1857) – Carswell-Multiple_Sclerosis.jpg. Licensed under Public Domain via Commons.

Research is improving our understanding of MS at a breathtaking pace. Just as one is getting comfortable with the status quo, a sudden paradigm shift occurs. This is the work of the men and women in white coats, labouring in dingy labs, peering down powerful microscopes, and scrutinising imaging scans-all in the drive to improve the care of people who suffer from this defiant disease. To avoid becoming dinosaurs, neurologists have to keep up with the rapid developments at the cutting-edge of multiple sclerosis.

Blade end of 'Cutting Edge', Sheaf Square. Robin Stott http://www.geograph.org.uk/photo/2894285
Blade end of ‘Cutting Edge’, Sheaf Square. Robin Stott http://www.geograph.org.uk/photo/2894285

MS research has enhanced our knowledge of all aspects of the disease. For example, we know a lot more about MS risk factors, as discussed in my previous post titled MS risk factors: the top 6. There is also a lot going on with drug development, as I addressed in my previous blog posts, The emerging progress from the world of MS, and Masitinib, a breakthrough drug shattering neurology boundaries. More importantly, there are many drugs, already in use, which have radically changed neurological practice in a very short time. In this blog post I will review 5 treatments which have already transformed the management of MS.

1. Monoclonal antibodies 

B0007277 Monoclonal antibodies. Anna Tanczos. Wellcome Images on Flikr. https://www.flickr.com/photos/wellcomeimages/5814713820
B0007277 Monoclonal antibodies. Wellcome Images on Flikr. https://www.flickr.com/photos/wellcomeimages/5814713820

It seems a long time ago now when the treatment of Multiple Sclerosis (MS) revolved just around interferons and steroids. Since then the monoclonal antibodies have changed the field radically. Drugs such as natalizumab and alemtuzumab are now mainstream, and many other ‘mabs’ have followed fast on their heels. Daclizumab is about to come into clinical practice soon, and ocrelizumab is full of promise for progressive MS, as discussed in this article in Medscape. With the floodgates now fully opened, other ‘mabs’ such as ofatumumab are trooping in fast. Unfortunately not all monoclonal antibodies are making the grade; an example is Opicinumab (anti LINGO-1), touted as a drug that boosts nerve signals, but which latest reports indicate failed to meet up to its high expectations.

2. Fingolimod

By Williamseanohlinger - Created with Spartan'10 softwareon my personal PC, Public Domain, Link
By Williamseanohlinger – Created with Spartan’10 softwareon my personal PC, Public Domain, Link

Fingolimod is the leader in the pack of sphingosine-1-phosphate receptor modulators. It has led the way and has the advantage that it is taken by mouth rather than by injection. It is limited by its risks on heart activity, and must be initiated under close cardiac monitoring. Beyond MS, it may have a wider impact on neurological practice as it is under consideration in the treatment of motor neurone disease (MND). Following quickly behind fingolimod, still in trial stages, are laquinimod, ozanimod, ponesimodsiponimod, and amiselimod. It is still not clear if these drugs will have a similar impact as the monoclonal antibodies, in which case we may end up with the war of the ‘Mabs’ versus the ‘Mods’.

3. Dimethyl fumarate

By Ben Mills - Own work, Public Domain, Link
By Ben MillsOwn work, Public Domain, Link

Dimethyl fumarate is an oral MS drug which works by activating the erythroid-derived 2-like transcriptional pathway. It has the stamp of approval of a Cochrane Database review on account of moderate quality evidence from two randomized clinical trials. It is fairly well-tolerated, mild flushing being the commonest reported side effect. 

4. Terifluonomide

By Jynto (talk) - Own workThis chemical image was created with Discovery Studio Visualizer., CC0, Link
By Jynto (talk) – Own workThis chemical image was created with Discovery Studio Visualizer., CC0, Link

Terifluonomide is another oral drug developed for the treatment of MS. It is a pyrimidine synthesis inhibitor. Unlike dimethyl fumarate, a recent Cochrane database review for terifluonomide found only low-quality evidence from 5 clinical trials. The review says ‘all studies had a high risk of detection bias for relapse assessment, and a high risk of bias due to conflicts of interest‘. Not very glowing tributes, but in its favour is the low frequency of significant side effects.

5. PEGylated interferon

Von Anypodetos - Eigenes Werk, CC0, Link
Von AnypodetosEigenes Werk, CC0, Link

PEG-interferon is an enhancement to good interferons of old (which, by the way, are still on active duty in MS). It was developed to reduce the high frequency of injections associated with Interferon beta-1a. Pegylation is the attachment of polyethylene glycol (PEG), and this process increases the half life of drugs. It is not clear that pegylation offers any other advantage over ‘ordinary’ interferon, but surely the 2 weekly injection is a significant advance. 

Breakthrough VSCO Monochrome Black & White KitCam at Carnegie Museum Of Art. Spiro Bolos on Flikr. https://www.flickr.com/photos/spirobolos/15879318128
Breakthrough VSCO Monochrome Black & White KitCam at Carnegie Museum Of Art. Spiro Bolos on Flikr. https://www.flickr.com/photos/spirobolos/15879318128

_______________________________________________________________________

For the future direction of MS treatment, I recommend Gavin Giovannoni‘s BartsMS Blog.

You may also  check out this recent review in American Health and Drug Benefits titled The Latest Innovations in the Drug Pipeline for Multiple Sclerosis

=======================================================================

neurochecklists-image

Masitinib, a breakthrough drug shattering neurology boundaries

In the process of writing a blog post on the research findings altering neurological practice, my sight fell on the drug, Masitinib. I was completely unaware of this tyrosine kinase inhibitor, one of the promising drugs in the fight against multiple sclerosis (MS). We are likely to hear a lot more about Masitinib in MS in the coming months.

By Zeldj - Own work, CC BY-SA 4.0, Link
By ZeldjOwn work, CC BY-SA 4.0, Link

Masitinib is however not flexing its muscles just in neuro-inflammation. On the contrary, it is seeking laurels far afield, in the realm of neuro-degeneration. I was indeed pleasantly surprised to find that researchers are studying the impact of Masitinib on two other horrible scourges of neurology. The first report I came across is the favourable outcome of a phase 3 trial of Masitinib in motor neurone disease (MND) or amyotrophic lateral sclerosis (ALS). The drug reportedly ‘reached its primary objectives‘ of efficacy and safety. In this trial, Masitinib was used as an add-on to Riluzole, the established MND drug. It’s all jolly collaborative at this stage, but who knows what threat Masitinib will pose to Riluzole in future! You may read a bit more on Masitinib and MND in this piece from Journal of Neuroinflammation.

By Capilano1 - Own work, CC BY-SA 4.0, Link
By Capilano1Own work, CC BY-SA 4.0, Link

The second report I came across is the potential of Masitinib in the treatment of Alzheimer’s disease (AD). This is at the phase 2 trial stage, and already showing very good outcomes in people with mild to moderate AD. Masitinib was used as an add-on drug to the conventional AD medications Memantine, Donepezil, Galantamine and Rivastigmine. These drugs can therefore rest comfortably on their thrones…at least for now! You can read a bit more on Masitinib and AD in this article from Expert Review of Neurotherapeutics.

Alzheimer's Disease. Hamza Butt on Flikr. https://www.flickr.com/photos/141735806@N08/28007367952
Alzheimer’s Disease. Hamza Butt on Flikr. https://www.flickr.com/photos/141735806@N08/28007367952

The question however remains, why should one drug work well on such disparate diseases? I know, this feels like deja vu coming shortly after my last blog post titled Alzheimers disease and its promising links with diabetes. In that post I looked at the promise of the diabetes drug, Liraglutide, in the treatment of Alzheimers disease. I have however also reviewed this type of cross-boundary activity of drugs in my older posts, Will riluzole really be good for cerebellar ataxia? and old drugs, new roles? Perhaps Masitinib is another pointer that, as we precisely define the cause of diseases, they will turn out to be merely different manifestations of the same pathology. Food for thought.

Benjah-bmm27 assumed. Own work assumed (based on copyright claims). Public Domain, Link
Benjah-bmm27 assumed. Own work assumed (based on copyright claims). Public Domain, Link

 

As I said, this wasn’t the post I set out to write. So watch out for my next blog post, the major research outcomes altering neurological practice.

_________________________________________________________________________

Neurochecklists image

What are the most iconic neurological disorders?

Neurology is a broad specialty covering a staggering variety of diseases. Some neurological disorders are vanishingly rare, but many are household names, or at least vaguely familiar to most people. These are the diseases which define neurology. Here, in alphabetical order, is my list of the top 60 iconic neurological diseases, with links to previous blog posts where available.

 

1. Alzheimer’s disease

By uncredited - Images from the History of Medicine (NLM) [1], Public Domain, https://commons.wikimedia.org/w/index.php?curid=11648572
By uncredited – Images from the History of Medicine (NLM) [1], Public Domain, https://commons.wikimedia.org/w/index.php?curid=11648572

2. Behcet’s disease

By Republic2011 - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=17715921
By Republic2011Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=17715921

3. Bell’s palsy

By http://wellcomeimages.org/indexplus/obf_images/69/f2/8d6c4130f4264b4b906960cf1f7e.jpgGallery: http://wellcomeimages.org/indexplus/image/M0011440.html, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=36350600
By http://wellcomeimages.org/indexplus/obf_images/69/f2/8d6c4130f4264b4b906960cf1f7e.jpgGallery: http://wellcomeimages.org/indexplus/image/M0011440.html, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=36350600

4. Brachial neuritis

5. Brain tumours

6. Carpal tunnel syndrome

7. Cerebral palsy (CP)

8. Cervical dystonia

9. Charcot Marie Tooth disease (CMT)

By http://wellcomeimages.org/indexplus/obf_images/66/09/4dfa424fe11bb8dc56b2058f04ba.jpgGallery: http://wellcomeimages.org/indexplus/image/V0026141.html, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=36578490
By http://wellcomeimages.org/indexplus/obf_images/66/09/4dfa424fe11bb8dc56b2058f04ba.jpgGallery: http://wellcomeimages.org/indexplus/image/V0026141.html, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=36578490

10. Chronic inflammatory demyelinating polyneuropathy (CIDP)

11. Cluster headache

12. Creutzfeldt-Jakob disease (CJD)

By Unknown - http://www.sammlungen.hu-berlin.de/dokumente/11727/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4008658
By Unknownhttp://www.sammlungen.hu-berlin.de/dokumente/11727/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4008658

13. Duchenne muscular dystrophy (DMD)

By G._Duchenne.jpg: unknown/anonymousderivative work: PawełMM (talk) - G._Duchenne.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=9701531
By G._Duchenne.jpg: unknown/anonymousderivative work: PawełMM (talk) – G._Duchenne.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=9701531

14. Encephalitis

15. Epilepsy

16. Essential tremor

17. Friedreich’s ataxia

By Unknown - http://www.uic.edu/depts/mcne/founders/page0035.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3960759
By Unknownhttp://www.uic.edu/depts/mcne/founders/page0035.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3960759

18. Frontotemporal dementia (FTD)

19. Guillain-Barre syndrome (GBS)

By Anonymous - Ouvrage : L'informateur des aliénistes et des neurologistes, Paris : Delarue, 1923, Public Domain, https://commons.wikimedia.org/w/index.php?curid=28242077
By Anonymous – Ouvrage : L’informateur des aliénistes et des neurologistes, Paris : Delarue, 1923, Public Domain, https://commons.wikimedia.org/w/index.php?curid=28242077

20. Hashimoto encephalopathy

21. Hemifacial spasm

22. Horner’s syndrome

By Unknown - http://ihm.nlm.nih.gov/images/B15207, Public Domain, https://commons.wikimedia.org/w/index.php?curid=19265414
By Unknownhttp://ihm.nlm.nih.gov/images/B15207, Public Domain, https://commons.wikimedia.org/w/index.php?curid=19265414

23. Huntington’s disease (HD)

https://en.wikipedia.org/wiki/George_Huntington#/media/File:George_Huntington.jpg
https://en.wikipedia.org/wiki/George_Huntington#/media/File:George_Huntington.jpg

24. Idiopathic intracranial hypertension (IIH)

25. Inclusion body myositis (IBM)

26. Kennedy disease

27. Korsakoff’s psychosis

28. Lambert-Eaton myasthenic syndrome (LEMS)

29. Leber’s optic neuropathy (LHON)

30. McArdles disease

31. Meningitis

32. Migraine

33. Miller-Fisher syndrome (MFS)

By J3D3 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=34315507
By J3D3Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=34315507

34. Motor neurone disease (MND)

35. Multiple sclerosis (MS)

36. Multiple system atrophy (MSA)

37. Myasthenia gravis (MG)

38. Myotonic dystrophy

39. Narcolepsy

40. Neurofibromatosis (NF)

41. Neuromyelitis optica (NMO)

42. Neurosarcoidosis

43. Neurosyphilis

44. Parkinson’s disease (PD)

45. Peripheral neuropathy (PN)

46. Peroneal neuropathy

47. Progressive supranuclear palsy (PSP)

48. Rabies

49. Restless legs syndrome (RLS)

50. Spinal muscular atrophy (SMA)

51. Stiff person syndrome (SPS)

52. Stroke

53. Subarachnoid haemorrhage (SAH)

54. Tension-type headache (TTH)

55. Tetanus

56. Transient global amnesia (TGA)

57. Trigeminal neuralgia

58. Tuberous sclerosis

59. Wernicke’s encephalopathy

By J.F. Lehmann, Muenchen - IHM, Public Domain, https://commons.wikimedia.org/w/index.php?curid=9679254
By J.F. Lehmann, Muenchen – IHM, Public Domain, https://commons.wikimedia.org/w/index.php?curid=9679254

60. Wilson’s disease

By Carl Vandyk (1851–1931) - [No authors listed] (July 1937). "S. A. Kinnier Wilson". Br J Ophthalmol 21 (7): 396–97. PMC: 1142821., Public Domain, https://commons.wikimedia.org/w/index.php?curid=11384670
By Carl Vandyk (1851–1931) – [No authors listed] (July 1937). “S. A. Kinnier Wilson“. Br J Ophthalmol 21 (7): 396–97. PMC: 1142821., Public Domain, https://commons.wikimedia.org/w/index.php?curid=11384670

===============================

The Neurology Lounge has a way to go to address all these diseases, but they are all fully covered in neurochecklists. In a future post, I will look at the rare end of the neurological spectrum and list the 75 strangest and most exotic neurological disorders.

The emerging progress from the world of MS

Multiple sclerosis (MS) takes a large chunk of neurological practice. This is not only because it is common, but also because of its devastating impact. It predominantly affects the young, and deals a blow that reverberates through the wider family and society. This is why it is a top priority in neurology.

A lot however remains uncertain and controversial in MS. The cause of MS for instance remains unknown although the list of risk factors is a mile long (see my previous blog listing the top 6 MS risk factors). MS is a well-known condition but it features prominently in the most controversial questions in neurology. The pathology and subtypes of MS are subjects of intense debate, and the best tests and treatments are still being worked out.

By Marvin 101 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2846763
By Marvin 101Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2846763

The uncertainties in MS are quite fundamental. Take these two recent publications in high impact journals arguing opposites sides of an MS risk factor. One says there is no association of multiple sclerosis activity and progression with EBV or tobacco use, and the other says smoking cessation improves prognosis of multiple sclerosis. Another research article in the JNNP published this year suggests that we are still not sure what constitutes pathological brain atrophy in MS.

By Monthly_multiple_sclerosis_anim.gif: Waglionederivative work: Garrondo - This file was derived from  Monthly multiple sclerosis anim.gif: , Public Domain, https://commons.wikimedia.org/w/index.php?curid=26444219
By Monthly_multiple_sclerosis_anim.gif: Waglionederivative work: Garrondo – This file was derived from  Monthly multiple sclerosis anim.gif: , Public Domain, https://commons.wikimedia.org/w/index.php?curid=26444219

But it’s not all controversy and conflict in the world of MS. There is real progress shining a light to a brighter future in MS ,and here are a 11 I have found.

1. Interferons, with twists

Interferons have been the mainstay of MS treatment for decades. They are still standing their grounds despite inconclusive evidence of their effectiveness, their side effects, and the challenge from newer treatments. One way they hope to carry on into the future is by joining forces with oral contraceptives. This is according to a paper published in Neurology last year titled Oral contraceptives combined with interferon β in multiple sclerosis. The authors report that ethinylstradiol and desogestrel aid interferon-ß to reduce the number of new lesions in women with relapsing remitting multiple sclerosis.

We are also learning a little bit more about the types of patients who do worse on interferons. The Journal of Neuroimmunology reports that MS subjects with obesity do less well on interferons, and never achieve the valued status of NEDA, no evidence of disease activity. Another paper in JAMA Neurology, on the other hand, suggests that MS subjects with low Vitamin D levels have poorer disease control when treated with interferon.

2. Vitamin D

There is a lot of uncertainty about the significance of Vitamin D deficiency in MS. A big question is if vitamin D should be given routinely to prevent and treat MS. The potential benefit of Vitamin D was recently the subject of an article published in Journal of Cell Biology titled Vitamin D receptor–retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. The University of Cambridge researchers who carried out the study showed that Vitamin D activates a protein receptor, retinoid X receptor γ (RXR-γ), and this plays a role in the repair of myelin, the fatty nerve sheathing that is damaged in multiple sclerosis. The University of Cambridge statement announcing the finding makes for a simpler read: Vitamin D could repair nerve damage in multiple sclerosis.

3. Melatonin

An article in Scientific Americanfirst highlighted an association between seasonal MS relapses and melatonin. The science is rather complex, but the idea is based on the recognition that people with MS have fewer relapses in the darker months of the year, and this is when production of the hormone, melatonin, peaks. The research paper itself is published in Cell under the title Melatonin Contributes to the Seasonality of Multiple Sclerosis Relapses. The researchers proved their hypothesis by demonstrating that melatonin levels are lowest during an MS relapse than at other times. Furthermore, the pathology of the disease improves in MS mice treated with melatonin. For a simplified read, try this, perhaps over-enthusiastic, take from MD titled Melatonin Could One Day Treat MS.

4. Helicobacter pylori

Helicobacter pylori. AJ Cann on Flikr. https://www.flickr.com/photos/ajc1/6946417103
Helicobacter pylori. AJ Cann on Flikr. https://www.flickr.com/photos/ajc1/6946417103

In what may be an attempt at rehabilitation, H pylori is attempting to make a good name for itself. Notorius for causing stomach ulcers, it now wants to be known as the patron saint of MS. It is a tenuous link I have to say, but I can’t argue against the research paper published in the prestigious Journal of Neurology, Neurosurgery and Psychiatry (JNNP). The article has a refreshingly self-explanatory title Helicobacter pylori infection as a protective factor against multiple sclerosis risk in females. The authors show that people with MS are less likely to be infected with H. pylori than control subjects. But I will not rush to swim in that dirty-looking pool yet, the margin is thin; 16% versus 21% in control subjects. It however raises the intriguing relationship between infections and autoimmunity, a subject explored brilliantly in the accompanying editorial, the hygiene hypothesis of multiple sclerosis.

5. Phenytoin

Phenytoin is very familiar to neurologists because it was a leading epilepsy medication for decades. Although it still has pride of place in the treatment of status epilepsy, it has largely fallen out of favour-mainly for its cosmetic and cognitive side effects. It is therefore surprising to see phenytoin resurrecting in the world of multiple sclerosis. In a large trial published in Lancet Neurology this year, researchers showed a neuroprotective effect of phenytoin on optic neuritis, a common symptom of MS. Neuroprotection, if you must know, is the holy grail of neurology. The article is titled Phenytoin for neuroprotection in patients with acute optic neuritis: a randomised, placebo-controlled, phase 2 trial. But you might as well read the distilled, and not over-sensational title, in The TelegraphCheap epilepsy drug could prevent nerve damage in Multiple Sclerosis. I think the findings require a long stretch of the imagination, but I am happy to do this to remain positive.

6. Pramipexole

Modelling the molecular basis of Parkinson's disease. Argonne National Laboratory on Flikr. https://www.flickr.com/photos/argonne/4192798573
Modelling the molecular basis of Parkinson’s disease. Argonne National Laboratory on Flikr. https://www.flickr.com/photos/argonne/4192798573

Pramipexole is a dopamine agonist, a group of drugs used in the treatment of Parkinson’s disease. They are not as popular as they once were, partly again due to side effects. They may however take on an important role in MS. I first came across this in the Barts MS Blog titled Dopamine modulation – a novel target for MS. This refers to an article published in Molecular Neurobiology, Pramipexole, a Dopamine D2/D3 Receptor-Preferring Agonist, Prevents Experimental Autoimmune Encephalomyelitis Development in Mice. I fail to understand why our ivory towers love these long-winded titles! The bottom line however is that Pramipexole can modulate the immune system thereby limiting the damage it inflicts on the nervous system. Don’t ask me how it does this-I dare you to go read the abstract!

7. Ozanimod

Ozanimod is a sphingosine-1-phosphate receptor modulator, and it has shown promise in trials of relapsing remitting MS. This was the conclusion of a recent randomised, placebo-controlled, phase 2 trial of Ozanimod in MS published in Lancet Neurology. Heart-warmingly called the RADIANCE study, the authors demonstrated the effectiveness of Ozanimod in subjects across 55 centres spread over 13 countries. This feat was rewarded with demonstrable reduction in MRI lesion load in the treated subjects. The phase 3 trial therefore promises a lot…but will it deliver?

8. Anoctamin 2 (ANO2)

By Unknown photographer/artist (False color modifications made by myself--DO11.10) - Dr. Triche National Cancer Institute, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1243806
By Unknown photographer/artist (False color modifications made by myself–DO11.10) – Dr. Triche National Cancer Institute, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1243806

Researchers are veritable hunters, looking for weak spots in their prey, diseases. They then hone in on their victims vulnerabilities, and pounce. In this way they develop treatment strategies. One such weak spot, recently reported in Proceedings of the National Academy of Sciences (PNAS), is connected to the  chloride channel protein Anoctamin 2 (ANO2). The paper, Anoctamin 2 identified as an autoimmune target in multiple sclerosis, reports that subjects with MS have high antibody activity against ANO2. It’s rather complex biochemistry, and for a digested read see the version in Multiple Sclerosis News Today titled New Protein, Anoctamin 2, Identified as a Target of Autoantibody Production in MS. If ANO2 has anything to do with causing MS, you can be sure treatment strategies will follow. If this turns out to be an important pathway in MS, the armoury of MSologists will soon contain stronger firepower.

9. Intrathecal CD20

By Gray (Gray's Anatomy) [Public domain], via Wikimedia Commons
By Gray (Gray’s Anatomy) [Public domain], via Wikimedia Commons
I know, getting into unfamiliar territory now, but the future always feels that way. In a study titled Intrathecal anti-CD20 efficiently depletes meningeal B cells in CNS autoimmunity, researchers injected CD20 into the spinal fluid of mice. They then showed that this depletes the B cells that cause the inflammation in MS. The article is published in Annals of Clinical and Translational Neurology, (I know, I haven’t heard of it before now myself). It is a significant enough step for JAMA Neurology to ask, Is intrathecal anti-CD20 a therapeutic option in treating MS relapse? Whether this would translate into clinical benefit is not clear from the article, but it is promising.

10. Haematopoietic cell transplant (HCT)

There have been reports in the lay press of subjects with MS getting up and walking, almost miraculously. There is however actually some science behind it all, for a change. An article in JAMA Neurology titled, rather clumsily, High-Dose Immunosuppressive Therapy and Autologous Hematopoietic Cell Transplantation for Relapsing-Remitting Multiple Sclerosis (HALT-MS), illustrated the benefits of haematopoietic cell transplant in MS. The 3 year interim analysis shows that HCT successfully induces sustained remission in MS-what more can we expect from an emerging treatment!

11. FLAIR2

© Nevit Dilmen [CC BY-SA 3.0 or GFDL], via Wikimedia Commons
© Nevit Dilmen [CC BY-SA 3.0 or GFDL], via Wikimedia Commons
MS is as much a neurological, as it is a radiological, condition. The diagnosis of MS is heavily reliant on what is, or is not, a lesion on MRI scans; what is new and what is old; and what is getting bigger or smaller. Believe me, this is hardly ever straightforward. It is therefore gratifying to read an article (OK, I admit it, an abstract) in the American Journal of Neuroradiology titled FLAIR2: A Combination of FLAIR and T2 for Improved MS Lesion Detection. The authors report that they greatly improved the detection of MS lesions by combining two standard magnetic resonance imaging (MRI) techniques called T2 and FLAIR. This technique, FLAIR2, the authors say, is ‘a simple approach of obtaining CSF suppression with an improved contrast-to-noise ratio’, whatever that means! It does make one worry- how much we are actually missing now? FLAIR2 to the rescue.

12. Developing prospect

I know I said 11, but for those who like things to be even I will take you out of your misery and make it an even dozen. Look out for the Amiloride Clinical Trial In Optic Neuritis (ACTION). Something for the future!