The 13 most dreadful neurological disorders…and the groups standing up to them

Neurology embodies some of the most dreadful diseases known to man. Every neurological disorder is disheartening, each characterised by unique frustrations for patients and their families. It is difficult to quantify the distress and misery these afflictions impose on their victims, and even harder to appreciate the despair and anguish they evoke in those who care for them.

Brain Art. Ars Electronica on Flikr. https://www.flickr.com/photos/arselectronica/7773544158

It is clearly hard to compare the impact of different neurological diseases. Some neurological disorders however stand out because of the consternation their names evoke, and the terror that follows in their wake. These diseases come with unimaginable physical and psychological burdens, and crushing demands on human and material resources. They impose either a debilitating morbidity, or a hasty mortality.

Neural pathways in the brain. NICHD on Flikr. https://www.flickr.com/photos/nichd/16672073333

The nervous system ailments in the list below pose exacting therapeutic challenges, resistant as they are to all attempts at treatment or cure. This list sets out to emphasise the urgency for neuroscience to find a remedy for each of them, but it does not intend to belittle the horror of the disorders omitted from it. The choice of the number 13 is, sadly, self-evident. Here then are the top 13 most dreadful neurological disorders…all with gold links to the associations helping to defeat them.

Working Brain. Gontzal García del Caño on Flikr. https://www.flickr.com/photos/euskalanato/2052487054

Ataxia

Ataxia, in lay terms, is incoordination. This typically manifests as an unsteady gait and clumsiness. Ataxia converts all activities of daily living into burdensome chores. Whilst many types of ataxia are preventable or reversible, primary ataxias are progressive and carry a dismal outlook. In this category are Spinocerebellar ataxia (SCA)Friedreich’s ataxia, and Ataxia telangiectasia. You may read more about ataxia in these previous blog posts: The 43 spinocerebellar ataxias: the complete checklistsOld drugs, new roles?, and Will Riluzole really be good for cerebellar ataxia?

Brain tumours

Brain cancers hardly need any description. They are either primary, arising from the brain cells, or metastatic, spreading to the brain from other organs. Some primary brain cancers, such as meningiomas and pituitary tumours, are, relatively, treatable. Many others are unfortunately ominously malignant. The most dreadful in this category is surely the spine-chilling glioblastoma multiforme. You may check out these previous blog posts for more on these tumuors: Calming the rage of brain tumours: hope for a dreaded cancerMaggots, viruses and lasers: some innovations for brain tumoursand Are steroids detrimental to survival in brain tumours?

Peripheral neuropathy

Peripheral neuropathy is ubiquitous in the neurology clinic. Neuropathy may result from reversible situations such as overindulgence in alcohol, uncontrolled diabetes, or Vitamin B12 deficiency. Neuropathy is often just a minor inconvenience when it manifests with sensory symptoms such as tingling and numbness. It may however be debilitating when it presents as limb paralysis, or complicated by major skeletal deformities. At the severe end of the spectrum of neuropathy are the hereditary forms such as Charcot Marie Tooth disease (CMT) and Familial amyloid polyneuropathy. Read more in these blog posts: The 52 variants of CMT… and their practical checklistsWhat’s looming at the frontline of peripheral neuropathy? and Will a pill really hold the cure for CMT?

Creutzfeldt Jakob disease (CJD)

CJD is the most iconic of the prion diseases. These disorders are as horrendous as they are enigmatic, defying categorisation as either infections or neurodegenerative diseases. More puzzling is their ability to be either hereditary and acquired. CJD exists in the classic or variant form, but both share a relentlessly rapid course, and a uniformly fatal end. You may read more in these previous blog posts titled Final day of ANA 2015- Prions center stage, and What are the links between Prion diseases and Parkinsonian disorders?

Dementia

Dementia is the scourge of longevity. Its name strikes terror because it insidiously colonises the cells that make us who we are. The most prominent dementia is Alzheimer’s disease, but it has equally dreadful companions such as Frontotemporal dementia (FTD) and Dementia with Lewy bodies (DLB). Read more on dementia in these blog posts: How bright is the future for Alzheimer’s disease?Alzheimer’s disease: a few curious things, and Alzheimers disease and its promising links with diabetes.

Dystonia

Dystonia marks its presence by distressing movements and painful postures. At its most benign, dystonia is only a twitch of the eyelid (blepharospasm) or a flicker of one side of the face (hemifacial spasm). At the extreme end, it produces continuous twisting and swirling motions, often defying all treatments. The causes of dystonia are legion, but the primary dystonias stand out by their hereditary transmission and marked severity. Read more on dystonia in these blog posts: Why does dystonia fascinate and challenge neurology? and Making sense of the dystonias: the practical checklists.

Huntington’s disease (HD)

Huntington’s disease is an iconic eponymous neurological disorder which is marked by the vicious triumvirate of chorea, dementia, and a positive family history. It is an awful condition, often driving its victims to suicide. It is a so-called trinucleotide repeat expansion disorder, implying that successive generations manifest the disease at an earlier age, and in more severe forms (genetic anticipation). You may read more on HD in the previous blog post titled What are the prospects of stamping out Huntington’s disease? 

Motor neurone disease (MND) 

Also known as Amyotrophic lateral sclerosis (ALS), MND is simply devastating. Recognising no anatomical boundaries, it ravages the central and peripheral nervous systems equally. MND creeps up on the neurones and causes early muscle twitching (fasciculations) and cramps. It then gradually devours the nerves resulting in muscle wasting, loss of speech, ineffectual breathing, and impaired swallowing. It is no wonder that one of the most read post on this blog is titled Is neurology research finally breaking the resolve of MND? Other previous blog posts on MND are The emerging links between depression and MNDWhat is the relationship of MND and cancer?Does diabetes protect from MND?, and MND and funeral directors-really?

Multiple sclerosis (MS)

Multiple sclerosis is a very common disease, and gets more common the further away you get from the equator. It is the subject of intense research because of the devastation it foists on predominantly young people. Many drugs now ameliorate, and even seem to halt the progression of, relapsing remitting MS (RRMS). This is however not the case with primary progressive MS (PPMS) which, until the introduction of ocrelizumab, defied all treatments. There are many contenders vying for the cause of MS, but the reason nerves in the central nervous system inexplicably lose their myelin sheaths remains elusive. You may read more on MS in these blog posts: The emerging progress from the world of MS , What are the remarkable drugs which have transformed the treatment of MS?, and Is low vitamin D a cause of multiple sclerosis?

Muscular dystrophy 

Muscular dystrophy is an umbrella term that covers a diverse range of inherited muscle diseases. The most devastating, on account of its early onset and unrelenting progression, is Duchenne muscular dystrophy (DMD). Adult neurologists will be more familiar with late onset muscular dystrophies such as Myotonic dystrophy and Facioscapulohumeral muscular dystrophy (FSHD). Read more on muscular dystrophy in these previous blog posts: How is neurology stamping out the anguish of Duchenne? and The A–Z of limb girdle muscular dystrophy (LGMD).

Rabies

Rabies, a rhabdovirus, is a zoonosis-it is transmitted to man by a wide range of animals such as dogs, bats, racoons, and skunks. It is the quintessential deadly neurological disease, popularised by the Steven King book and film, Cujo. Rabies manifests either as the encephalitic (furious) or the paralytic (dumb) forms. It wreaks havoc by causing irritability, hydrophobia (fear of water),  excessive sweating, altered consciousness, and inevitably death. Whilst there are vaccines to protect against rabies, a cure has eluded neuroscientists. This blog is yet to do justice to rabies but it is, at least, listed in the post titled What are the most iconic neurological disorders? But you could better by checking neurochecklists for details of the clinical features and management of rabies.

Spinal cord injury

Nothing is quite as heart-wrenching as the sudden loss of body function that results from spinal cord trauma. This often causes paralysis of both legs (paraplegia), or all four limbs (quadriplegia). This life-changing disorder is often accompanied by loss of control over bowel and bladder functions, and complications such as bed sores and painful spasms. You may read about the heroic efforts to treat spinal cord injury in the blog posts titled 6 innovations in the treatment of spinal cord injury and Head transplant, anyone?

Tetanus

Tetanus is an eminently preventable disease, now almost wiped out in developed countries by simple immunisation. It however continues its pillage and plunder in the developing world. It strikes young and old alike, often invading the body through innocuous wounds. Tetanus is caused by tetanospasmin and tetanolysin, the deadly toxins of the bacterium Clostridium tetani. The disease is classified as generalised, localised, cephalic, or neonatal tetanus. It is characterised by painful spasms which manifest as lockjaw (trismus), facial contortions (risus sardonicus), trunkal rigidity (opisthotonus), and vocal cord spasms (laryngospasm). The disease is awfully distressing and, when advanced, untreatable. It is a stain on the world that this avoidable disorder continuous to threaten a large number of its inhabitants. Check neurochecklists for more on the pathology, clinical features, and management of tetanus.

 

Light brain. Mario D’Amore on Flikr. https://www.flickr.com/photos/kidpixo/3470448888

As for all lists, this will surely be subject to debate, or perhaps some healthy controversy. Please leave a comment.

What are the new diseases emerging in neurology?

Medical futurists predict that scientific advances will lead to more precise definition of diseases. This will inevitably result in the emergence of more diseases and fewer syndromes. This case is made very eloquently in the book, The Innovators Prescription. Many neurological disorders currently wallow at the intuitive end of medical practice, and their journey towards precision medicine is painfully too slow. Neurology therefore has a great potential for the emergence of new disorders.

https://pixabay.com/en/pie-chart-diagram-statistics-parts-149727/
https://pixabay.com/en/pie-chart-diagram-statistics-parts-149727/

In the ‘good old days’, many diseases were discovered by individual observers working alone, and the diseases were named after them. In this way, famous diseases were named after people such as James Parkinson, Alois Alzheimer, and George Huntington. For diseases discovered by two or three people, it didn’t take a great stretch of the imagination to come up with double-barrelled names such as Guillain-Barre syndrome (GBS) or Lambert-Eaton myasthenic syndrome (LEMS).

By uncredited - Images from the History of Medicine (NLM) [1], Public Domain, https://commons.wikimedia.org/w/index.php?curid=11648572
By uncredited – Images from the History of Medicine (NLM) [1], Public Domain, https://commons.wikimedia.org/w/index.php?curid=11648572
Today, however, new diseases emerge as a result of advances made by large collaborations, working across continents. These new diseases are named after the pathological appearance or metabolic pathways involved (as it will require an act of genius to create eponymous syndromes to cater for all the scientists and clinicians involved in these multi-centre trials). This is unfortunately why new disorders now have very complex names and acronyms. Take, for examples, chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) and chronic relapsing inflammatory optic neuropathy (CRION). It is a sign that we should expect new neurological diseases to be baptised with more descriptive, but tongue-twisting, names.

 

https://pixabay.com/en/letters-a-abc-alphabet-literacy-67046/
https://pixabay.com/en/letters-a-abc-alphabet-literacy-67046/

New disease categories emerge in different ways. One is the emergence of a new disorder from scratch, with no antecedents whatsoever. Such was the case with autoimmune encephalitis, a category which has come from relative obscurity to occupy the centre stage of eminently treatable diseases. I have posted on this previously as What’s evolving at the cutting edge of autoimmune neurology and What are the dreadful autoimmune disorders that plague neurology? Other disease categories form when different diseases merge into a completely new disease category, or when a previously minor diseases mature and stand on their own feet. These are the stuff of my top 8 emerging neurological disorders.

 

By Photo (c)2007 Derek Ramsey (Ram-Man) - Self-photographed, CC BY-SA 2.5, Link
By Photo (c)2007 Derek Ramsey (Ram-Man) – Self-photographed, CC BY-SA 2.5, Link

1. mTORopathy

This huge monster is ‘threatening’ to bring together, under one roof, diverse disorders such as tuberous sclerosis complex, epilepsy, autism, traumatic brain injury, brain tumours, and dementia. You may explore this further in my previous blog post titled mTORopathy: an emerging buzzword for neurology.

Merging bubbles. Charlie Reece on Flikr. https://www.flickr.com/photos/charliereece/777487250
Merging bubbles. Charlie Reece on Flikr. https://www.flickr.com/photos/charliereece/777487250

2. IgG4-related autoimmune diseases

This new group of neurological diseases is threatening to disrupt the easy distinction between several neurological disorders such as myasthenia gravis (MG), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), and Guillain Barre syndrome (GBS). It even includes the newly described IgLON 5 antibody disorder, something I blogged about as IgLON5: a new antibody disorder for neurologists. You may explore IgG4-related disorders in this paper titled The expanding field of IgG4-mediated neurological autoimmune disorders. 

By Aida Pitarch - Own work, CC BY-SA 4.0, Link
By Aida PitarchOwn work, CC BY-SA 4.0, Link

3. Anti-MOG antibody disorders

Now, neurologists have always known about MOG, mostly as a minor bit player, an extra, so to say. No more, it is now all grown up and matured. And the growth is fast and involves many inflammatory demyelinating disease of the CNS such as fulminant demyelinating encephalomyelitis and multiphasic disseminated encephalomyelitis. How far will it go?

http://thebluediamondgallery.com/a/autoimmune.html
http://thebluediamondgallery.com/a/autoimmune.html

4. Hepatitis E virus related neurological disorders

A field which is spurning new neurological disorders is neurological infections, and Hepatitis E virus (HEV) is in the forefront. We are now increasingly recognising diverse Hepatitis E related neurological disorders. HEV has now been linked to diseases such as Guillain Barre syndrome (GBS) and brachial neuritis. And the foremost researcher in this area is Harry Dalton, a hepatologist working from Cornwall, not far from me! And Harry will be presenting at the next WESAN conference in Exeter in November 2017.

By Transferred from en.wikipedia to Commons.This media comes from the Centers for Disease Control and Prevention's Public Health Image Library (PHIL), with identification number #5605.Note: Not all PHIL images are public domain; be sure to check copyright status and credit authors and content providers.English | Slovenščina | +/−, Public Domain, Link
By Transferred from en.wikipedia to Commons.This media comes from the Centers for Disease Control and Prevention‘s Public Health Image Library (PHIL), with identification number #5605.Note: Not all PHIL images are public domain; be sure to check copyright status and credit authors and content providers.English | Slovenščina | +/−, Public Domain, Link

5. Zika virus

Zika virus is another novel infection with prominent neurological manifestations. We are learning more about it every day, and you may check my previous blog post on this, titled 20 things we now know for certain about the Zika virus.

By Manuel Almagro Rivas - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=47941048
By Manuel Almagro RivasOwn work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=47941048

6. Multisystem proteinopathy

Multisystem proteinopathy is a genetic disorder which affects muscles and bone, in addition to the nervous system. It is associated with Paget’s disease of the bone and inclusion body myositis, with implications for motor neurone disease (MND) and frontotemporal dementia (FTD). Quite a hydra-headed monster it seems, all quite complex, and perhaps one strictly for the experts.

Hydra. Andrew Jian on Flikr. https://www.flickr.com/photos/andrew_jian/475479747
Hydra. Andrew Jian on Flikr. https://www.flickr.com/photos/andrew_jian/475479747

7. GLUT-1 deficiency syndromes

GLUT-1 stands for glucose transporter type 1. Deficiency of GLUT-1 results in impaired transportation of glucose into the brainGLUT-1 deficiency syndrome presents with a variety of neurological features such as dystonia, epilepsy, ataxia, chorea, and a host of epilepsy types. It starts in infancy and is characterised by a low level of glucose and lactic acid in the cerebrospinal fluid. Expect to hear more on this in the near future.

Sugar Cubes. David pacey on Flikr. https://www.flickr.com/photos/63723146@N08/7164573186
Sugar Cubes. David pacey on Flikr. https://www.flickr.com/photos/63723146@N08/7164573186

8. Progressive Solitary Sclerosis

And this is my favourite paradigm shifter. Neurologists often see people with brain inflammatory lesions and struggle to decide if they fulfil the criteria for multiple sclerosis (MS). The current threshold for concern is when there have been two clinical events consistent with inflammation of the nervous system, or their MRI scan shows involvement of at least two different sites of the nervous system. Well, dot counting may soon be over, going by this paper in Neurology titled Progressive solitary sclerosis: gradual motor impairment from a single CNS demyelinating lesion. The authors identified 30 people with progressive clinical impairment arising from a single inflammatory nervous system lesion. The authors were convinced enough to recommend the inclusion of this new entity, progressive solitary sclerosis, in future classifications of inflammatory disorders of the central nervous system. Move over progressive MS, here comes progressive SS. Neurologists will surely have their job cut out for them.

Solitary tree at Sunset. epcp on Flikr. https://www.flickr.com/photos/epcprince/3418260382
Solitary tree at Sunset. epcp on Flikr. https://www.flickr.com/photos/epcprince/3418260382

Do you have any suggestions of emerging neurological disorders? Please leave a comment

=========================================================================

PS. These disorders are all covered in neurochecklists

screen-shot-2016-12-19-at-18-32-39

Why does dystonia fascinate and challenge neurology?

Dystonia is probably the most nebulous of neurological terms. Neurologists use the term for a vast array of neurological diseases. Dystonia also crops up as part of many complex neurological syndromes. Worse still, neurologists also use the name dystonia as a symptom. All quite confusing and perplexing for the lay observer.

Public Domain, Link
Public Domain, Link

No wonder dystonia defies simple definitions. Take the National Institute of Neurological Disorders and Stroke (NINDS) definition which labels dystonia as “a disorder characterized by involuntary muscle contractions that cause slow repetitive movements or abnormal postures“. Then compare it with the NHS Choices definition which sees dystonia as “a medical term for a range of movement disorders that cause muscle spasms and contractions“. We must accept the flexibility of dystonia as both a disorder, and a range of disorders. The defining feature of dystonia however is simple enough-abnormal muscle postures and contractions.

By Katomin at the English language Wikipedia, CC BY-SA 3.0, Link
By Katomin at the English language Wikipedia, CC BY-SA 3.0, Link

The complexity in the definition is just a tip of the iceberg of the things that neurologists find fascinating about dystonia. Here are 5 big reasons why dystonia excites and challenges neurologists.

1. Dystonia is a very visible disorder

Rogers Hartmann at TEDxSMU from tedxsmu on Vimeo.

The abnormal postures that typify dystonia are observable, and the neurologist can describe and define the disorder (or disorders!). This is not the case with many neurological disorders such as migraine, which rely entirely on a history, or epilepsy, which rely heavily on eyewitness accounts. The abnormal postures in dystonia are often very dramatic, and sometimes literally defy description. To help ‘decode’ complex dystonia, neurologists often make video recordings of their patients and send to dystonia experts. And dystonia experts present their own video recordings at neurology conferences, to teach the less initiated of course, but also to flaunt their well-earned expertise.

2. Dystonia is both hereditary and acquired

Von James Heilman, MD - Eigenes Werk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9445214
Von James Heilman, MDEigenes Werk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9445214

Many types of dystonia are hereditary. Myoclonus-dystonia and dopa-responsive dystonia (DRD) for example are caused by well-defined genetic mutations. Dystonia is however also frequently acquired, for example as an adverse effect of antidepressant, antipsychotic, and anti-epileptic drugs. Neurologists go to great lengths to sort out what type of dystonia their patients have, bristling with anticipation that the next genetic blood test they send off will clinch the diagnosis. It doesn’t seem to matter that this is often hope trumping experience.

3. Dystonia manifests in a multitude of ways

By Henry Vandyke Carter - Henry Gray (1918) Anatomy of the Human Body (See "Book" section below)Bartleby.com: Gray's Anatomy, Plate 1194, Public Domain, Link
By Henry Vandyke CarterHenry Gray (1918) Anatomy of the Human Body (See “Book” section below)Bartleby.com: Gray’s Anatomy, Plate 1194, Public Domain, Link

Dystonia may be localised such as with blepharospasm (excessive eyelid twitching), hemifacial spasm, Meige’s syndrome, and cervical dystonia (torticollis). At the same time, dystonia may be generalised as in Wilson’s disease, neuroferritinopathy, and neuroacanthocytosis. Dystonic symptoms often manifest spontaneously, but they may only be task-specific such as in writers cramp and musician’s dystonia. A further way dystonia crops up is as an ally of other movement disorders, as we see with dystonic tremor.

4. Dystonia is a rapidly evolving field

Bootstrap DNA by Charles Jencks, 2003. Mira66 on Flikr. https://www.flickr.com/photos/21804434@N02/3707633630
Bootstrap DNA by Charles Jencks, 2003. Mira66 on Flikr. https://www.flickr.com/photos/21804434@N02/3707633630

Unlike some neurological specialities that are stuck with age-old diseases, dystonia experts regularly describe new dystonia syndromes and genetic mutations, filling up an already crowded taxonomy. An example is the ever-expanding genetic mutations that cause primary dystonia, starting from DYT 1 to DYT 21, and still counting. The field of non-genetic dystonia is also expanding with new disorders such as Watchmaker’s dystonia. Well-established dystonia syndromes also surprise neurologists by manifesting in completely unexpected ways. Recent examples of these new phenotypes are foot drop dystonia resulting from parkin (PARK2) mutation. Neurologists also get excited when they come across known, but rare, presentations of dystonic syndromes such as this recent report on feeding dystonia in chorea-acanthocytosis. 

5. Treatments of dystonia are proliferating

Drugs. Daniel Foster on Flikr. https://www.flickr.com/photos/danielfoster/15097483625
Drugs. Daniel Foster on Flikr. https://www.flickr.com/photos/danielfoster/15097483625

Just as the types of dystonia are burgeoning, so are the treatments. Some interventions are novel, and some have a feel of ‘back to the future’. A few recent examples are treatment of isolated dystonia with zolpidem and selective peripheral denervation for cervical dystonia. Enough to keep the dystonia researchers busy, and to keep their patients feeling valued. Old school treatment such as botulinum toxin however maintain their pride of place. 

Human Genome. Richard Ricciardi on Flikr. https://www.flickr.com/photos/ricricciardi/11622986115
Human Genome. Richard Ricciardi on Flikr. https://www.flickr.com/photos/ricricciardi/11622986115

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For more on dystonia syndromes and treatment, check out:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Dystonia is a hydra; why not get a concise handle by exploring the dystonia topics in neurochecklists  

Neurochecklists image

What are the most controversial questions in neurology?

Uncertainty and doubt abound in Neurology. There are many evidence-free areas where experts rub each other the wrong way. These controversies are big and occur in all neurology subspecialties. Controversy-busters have tried for about a decade to iron out these wrinkles on neurology’s face, but the unanswered questions remain. This is why there is a 10th World Congress of Controversies in Neurology (CONy) holding in Lisbon this year.

I want to assure you I have no conflict of interest to declare in this blog. My interest is to explore  which questions have plagued this conference over the last 10 years to pick out the most controversial topics in neurology. To do this I reviewed all previous conference programs and focused on the items that were slated for debate. I looked for practical topics that have remained unresolved, or are just emerging. Here are my top controversial neurological questions:

Raccoon argument II. Tambako The Jaguar on Flikr. https://www.flickr.com/photos/tambako/7460999402
Raccoon argument II. Tambako The Jaguar on Flikr. https://www.flickr.com/photos/tambako/7460999402

 

1st CONy 2007 (Berlin, Germany)

  • Clinically isolated syndromes (CIS): To treat or not to treat
  • Is stem cell therapy an imminent treatment in advanced multiple sclerosis (MS)?
  • Vascular cognitive impairment is a misleading concept?
  • Is mild cognitive impairment a misleading concept?

 

2nd CONy 2008 (Athens, Greece)

  • Can physical trauma precipitate multiple sclerosis?
  • Should patients with Parkinson’s disease (PD) be treated in the pre-motor phase?
  • What is the first line therapy for chronic inflammatory demyelinating polyneuropathy (CIDP)?
  • Is intravenous immunoglobulin (IVIg) effective in chronic myasthenia gravis (MG)?
  • Tau or ß-amyloid immunotherapy in Alzheimer’s disease (AD)?
  • Chronic fatigue syndrome is an organic disease and should be treated by neurologists?

 

3rd CONy 2009 (Prague, Czech Republic)

  • Should cerebrospinal fluid (CSF) be tested in every clinically isolated syndrome?
  • Can we prevent multiple sclerosis (MS) by early vitamin D supplementation and EBV vaccination?
  • Does Parkinson’s disease (PD) have a prion-like pathogenesis?
  • Patients with medication overuse headache should be treated only after analgesic withdrawal?

 

 

4th CONy 2010 (Barcelona, Spain)

  • Camptocormia in parkinson’s disease (PD): Is this dystonia or myopathy?
  • Does chronic venous insufficiency play a role in the pathogenesis of multiple sclerosis (MS)?
  • IVIg or immunosuppression for long-term treatment of CIDP?

 

5th CONy 2011 (Beijing, China)

  • Is sporadic Parkinson’s disease etiology predominantly environmental or genetic?
  • Is multiple sclerosis (MS) an inflammatory or a primarily neurodegenerative disease?
  • Are the new multiple sclerosis oral medications superior to conventional therapies?
  • Is bilateral transverse venous sinus stenosis a critical finding in idiopathic intracranial hypertension (IIH)?

 

6th CONy 2012 (Vienna, Austria)

  • Will there ever be a valid biomarker for Alzheimer’s disease (AD)?
  • Is amyloid imaging clinically useful in Alzheimer’s disease (AD)?
  • Do functional syndromes have a neurological substrate?
  • Should blood pressure be lowered immediately after stroke?
  • Migraine is primarily a vascular disorder?

 

 

7th CONy 2013 (Istanbul, Turkey)

  • Is intravenous thrombolysis the definitive treatment for acute large artery stroke?
  • Atrial fibrillation related stroke should be treated only with the new anticoagulants?
  • Is the best treatment for chronic migraine botulinum toxin?
  • IS CGRP the key molecule in migraine?
  • Is chronic cluster headache best treated with sphenopalatine ganglion (SPG) stimulation?
  • When should deep brain stimulation (DBS) be initiated for Parkinson’s disease?
  • Do interferons prevent secondary progressive multiple sclerosis (SPMS)?
  • Is deep brain stimulation (DBS) better than botulinum toxin in primary dystonia?
  • Are present outcome measures relevant for assessing efficacy of disease modifying therapies in multiple sclerosis (MS)?
  • Should radiologically isolated syndromes (RIS) be treated?
  • Does genetic testing have a role in epilepsy management?
  • Should cortical strokes be treated prophylactically against seizures?
  • Should enzyme-inducing antiepileptic drugs (AEDs) be avoided?
  • EEG is usually necessary when diagnosing epilepsy

 

8th CONy 2014 (Berlin, Germany)

  • Is late-onset depression prodromal neurodegeneration?
  • Does Parkinson’s disease begin in the peripheral nervous system?
  • What is the best treatment in advanced Parkinson’s disease?
  • Are most cryptogenic epilepsies immune mediated?
  • Should epilepsy be diagnosed after the first unprovoked seizure?
  • Do anti-epileptic drugs (AEDs) contribute to suicide risk?
  • Should the ketogenic diet be prescribed in adults with epilepsy?
  • Do patients with idiopathic generalized epilepsies require lifelong treatment?
  • Cryptogenic stroke: Immediate anticoagulation or long-term ECG recording?
Southern Chivalry: Argument Vs Clubs. elycefeliz on Flikr. https://www.flickr.com/photos/elycefeliz/6271932825
Southern Chivalry: Argument Vs Clubs. elycefeliz on Flikr. https://www.flickr.com/photos/elycefeliz/6271932825

 

9th CONy 2015 (Budapest, Hungary)

  • Is discontinuation of disease-modifying therapies safe in  long-term stable multiple sclerosis?
  • Is behavioral therapy necessary for the treatment of migraine?
  • Which is the first-line therapy in cases of IIH with bilateral papilledema?
  • Should patients with unruptured arterio-venous malformations (AVM) be referred for intervention?
  • Should survivors of hemorrhagic strokes be restarted on oral anticoagulants?
  • Will stem cell therapy become important in stroke rehabilitation?
  • Do statins cause cognitive impairment?

 

10th CONy 2016 (Lisbon, Portugal)

  • Which should be the first-line therapy for CIDP? Steroids vs. IVIg
  • Should disease-modifying treatment be changed if only imaging findings worsen in multiple sclerosis?
  • Should disease-modifying therapies be stopped when secondary progressive MS develops?
  • Should non-convulsive status epilepsy be treated aggressively?
  • Does traumatic chronic encephalopathy (CTE) exist?
  • Does corticobasal degeneration (CBD) exist as a clinico-pathological entity?
  • Is ß-amyloid still a relevant target in AD therapy?
  • Will electrical stimulation replace medications for the treatment of cluster headache?
  • Carotid dissection: Should anticoagulants be used?
  • Is the ABCD2 grading useful for clinical management of TIA patients?
  • Do COMT inhibitors have a future in treatment of Parkinson’s disease?

 

Debate Energetico. Jumanji Solar on Flikr. https://www.flickr.com/photos/jumanjisolar/5371921203
Debate Energetico. Jumanji Solar on Flikr. https://www.flickr.com/photos/jumanjisolar/5371921203

 

Going through this list, I feel reassured that the experts differ in their answers to these questions? The acknowledgement of uncertainty allows us novices to avoid searching for non-existent black and white answers. It is however also unsettling that I thought some of these questions had been settled long ago. It goes to show that apparently established assumptions are not unshakable?

Do you have the definitive answers to resolve these controversies? Are there important controversies that are missing here? Please leave a comment