The 13 most dreadful neurological disorders…and the groups standing up to them

Neurology embodies some of the most dreadful diseases known to man. Every neurological disorder is disheartening, each characterised by unique frustrations for patients and their families. It is difficult to quantify the distress and misery these afflictions impose on their victims, and even harder to appreciate the despair and anguish they evoke in those who care for them.

Brain Art. Ars Electronica on Flikr. https://www.flickr.com/photos/arselectronica/7773544158

It is clearly hard to compare the impact of different neurological diseases. Some neurological disorders however stand out because of the consternation their names evoke, and the terror that follows in their wake. These diseases come with unimaginable physical and psychological burdens, and crushing demands on human and material resources. They impose either a debilitating morbidity, or a hasty mortality.

Neural pathways in the brain. NICHD on Flikr. https://www.flickr.com/photos/nichd/16672073333

The nervous system ailments in the list below pose exacting therapeutic challenges, resistant as they are to all attempts at treatment or cure. This list sets out to emphasise the urgency for neuroscience to find a remedy for each of them, but it does not intend to belittle the horror of the disorders omitted from it. The choice of the number 13 is, sadly, self-evident. Here then are the top 13 most dreadful neurological disorders…all with gold links to the associations helping to defeat them.

Working Brain. Gontzal García del Caño on Flikr. https://www.flickr.com/photos/euskalanato/2052487054

Ataxia

Ataxia, in lay terms, is incoordination. This typically manifests as an unsteady gait and clumsiness. Ataxia converts all activities of daily living into burdensome chores. Whilst many types of ataxia are preventable or reversible, primary ataxias are progressive and carry a dismal outlook. In this category are Spinocerebellar ataxia (SCA)Friedreich’s ataxia, and Ataxia telangiectasia. You may read more about ataxia in these previous blog posts: The 43 spinocerebellar ataxias: the complete checklistsOld drugs, new roles?, and Will Riluzole really be good for cerebellar ataxia?

Brain tumours

Brain cancers hardly need any description. They are either primary, arising from the brain cells, or metastatic, spreading to the brain from other organs. Some primary brain cancers, such as meningiomas and pituitary tumours, are, relatively, treatable. Many others are unfortunately ominously malignant. The most dreadful in this category is surely the spine-chilling glioblastoma multiforme. You may check out these previous blog posts for more on these tumuors: Calming the rage of brain tumours: hope for a dreaded cancerMaggots, viruses and lasers: some innovations for brain tumoursand Are steroids detrimental to survival in brain tumours?

Peripheral neuropathy

Peripheral neuropathy is ubiquitous in the neurology clinic. Neuropathy may result from reversible situations such as overindulgence in alcohol, uncontrolled diabetes, or Vitamin B12 deficiency. Neuropathy is often just a minor inconvenience when it manifests with sensory symptoms such as tingling and numbness. It may however be debilitating when it presents as limb paralysis, or complicated by major skeletal deformities. At the severe end of the spectrum of neuropathy are the hereditary forms such as Charcot Marie Tooth disease (CMT) and Familial amyloid polyneuropathy. Read more in these blog posts: The 52 variants of CMT… and their practical checklistsWhat’s looming at the frontline of peripheral neuropathy? and Will a pill really hold the cure for CMT?

Creutzfeldt Jakob disease (CJD)

CJD is the most iconic of the prion diseases. These disorders are as horrendous as they are enigmatic, defying categorisation as either infections or neurodegenerative diseases. More puzzling is their ability to be either hereditary and acquired. CJD exists in the classic or variant form, but both share a relentlessly rapid course, and a uniformly fatal end. You may read more in these previous blog posts titled Final day of ANA 2015- Prions center stage, and What are the links between Prion diseases and Parkinsonian disorders?

Dementia

Dementia is the scourge of longevity. Its name strikes terror because it insidiously colonises the cells that make us who we are. The most prominent dementia is Alzheimer’s disease, but it has equally dreadful companions such as Frontotemporal dementia (FTD) and Dementia with Lewy bodies (DLB). Read more on dementia in these blog posts: How bright is the future for Alzheimer’s disease?Alzheimer’s disease: a few curious things, and Alzheimers disease and its promising links with diabetes.

Dystonia

Dystonia marks its presence by distressing movements and painful postures. At its most benign, dystonia is only a twitch of the eyelid (blepharospasm) or a flicker of one side of the face (hemifacial spasm). At the extreme end, it produces continuous twisting and swirling motions, often defying all treatments. The causes of dystonia are legion, but the primary dystonias stand out by their hereditary transmission and marked severity. Read more on dystonia in these blog posts: Why does dystonia fascinate and challenge neurology? and Making sense of the dystonias: the practical checklists.

Huntington’s disease (HD)

Huntington’s disease is an iconic eponymous neurological disorder which is marked by the vicious triumvirate of chorea, dementia, and a positive family history. It is an awful condition, often driving its victims to suicide. It is a so-called trinucleotide repeat expansion disorder, implying that successive generations manifest the disease at an earlier age, and in more severe forms (genetic anticipation). You may read more on HD in the previous blog post titled What are the prospects of stamping out Huntington’s disease? 

Motor neurone disease (MND) 

Also known as Amyotrophic lateral sclerosis (ALS), MND is simply devastating. Recognising no anatomical boundaries, it ravages the central and peripheral nervous systems equally. MND creeps up on the neurones and causes early muscle twitching (fasciculations) and cramps. It then gradually devours the nerves resulting in muscle wasting, loss of speech, ineffectual breathing, and impaired swallowing. It is no wonder that one of the most read post on this blog is titled Is neurology research finally breaking the resolve of MND? Other previous blog posts on MND are The emerging links between depression and MNDWhat is the relationship of MND and cancer?Does diabetes protect from MND?, and MND and funeral directors-really?

Multiple sclerosis (MS)

Multiple sclerosis is a very common disease, and gets more common the further away you get from the equator. It is the subject of intense research because of the devastation it foists on predominantly young people. Many drugs now ameliorate, and even seem to halt the progression of, relapsing remitting MS (RRMS). This is however not the case with primary progressive MS (PPMS) which, until the introduction of ocrelizumab, defied all treatments. There are many contenders vying for the cause of MS, but the reason nerves in the central nervous system inexplicably lose their myelin sheaths remains elusive. You may read more on MS in these blog posts: The emerging progress from the world of MS , What are the remarkable drugs which have transformed the treatment of MS?, and Is low vitamin D a cause of multiple sclerosis?

Muscular dystrophy 

Muscular dystrophy is an umbrella term that covers a diverse range of inherited muscle diseases. The most devastating, on account of its early onset and unrelenting progression, is Duchenne muscular dystrophy (DMD). Adult neurologists will be more familiar with late onset muscular dystrophies such as Myotonic dystrophy and Facioscapulohumeral muscular dystrophy (FSHD). Read more on muscular dystrophy in these previous blog posts: How is neurology stamping out the anguish of Duchenne? and The A–Z of limb girdle muscular dystrophy (LGMD).

Rabies

Rabies, a rhabdovirus, is a zoonosis-it is transmitted to man by a wide range of animals such as dogs, bats, racoons, and skunks. It is the quintessential deadly neurological disease, popularised by the Steven King book and film, Cujo. Rabies manifests either as the encephalitic (furious) or the paralytic (dumb) forms. It wreaks havoc by causing irritability, hydrophobia (fear of water),  excessive sweating, altered consciousness, and inevitably death. Whilst there are vaccines to protect against rabies, a cure has eluded neuroscientists. This blog is yet to do justice to rabies but it is, at least, listed in the post titled What are the most iconic neurological disorders? But you could better by checking neurochecklists for details of the clinical features and management of rabies.

Spinal cord injury

Nothing is quite as heart-wrenching as the sudden loss of body function that results from spinal cord trauma. This often causes paralysis of both legs (paraplegia), or all four limbs (quadriplegia). This life-changing disorder is often accompanied by loss of control over bowel and bladder functions, and complications such as bed sores and painful spasms. You may read about the heroic efforts to treat spinal cord injury in the blog posts titled 6 innovations in the treatment of spinal cord injury and Head transplant, anyone?

Tetanus

Tetanus is an eminently preventable disease, now almost wiped out in developed countries by simple immunisation. It however continues its pillage and plunder in the developing world. It strikes young and old alike, often invading the body through innocuous wounds. Tetanus is caused by tetanospasmin and tetanolysin, the deadly toxins of the bacterium Clostridium tetani. The disease is classified as generalised, localised, cephalic, or neonatal tetanus. It is characterised by painful spasms which manifest as lockjaw (trismus), facial contortions (risus sardonicus), trunkal rigidity (opisthotonus), and vocal cord spasms (laryngospasm). The disease is awfully distressing and, when advanced, untreatable. It is a stain on the world that this avoidable disorder continuous to threaten a large number of its inhabitants. Check neurochecklists for more on the pathology, clinical features, and management of tetanus.

 

Light brain. Mario D’Amore on Flikr. https://www.flickr.com/photos/kidpixo/3470448888

As for all lists, this will surely be subject to debate, or perhaps some healthy controversy. Please leave a comment.

Alzheimers disease and its promising links with diabetes

In the excellent book, The Innovators Prescription, the authors predict that precision medicine will replace intuitive medicine, and diseases will be defined by their underlying metabolic mechanisms, and not by the organs they affect, or the symptoms they produce. Clayton Christensen and colleagues argue that this precise definition of diseases will lead to more effective treatments. But they also show that precision medicine will show that many different diseases actually share the same underlying metabolic derangements. Many disparate diseases will therefore turn out to be just mere manifestations of the same metabolic disease.

Precision Medicine Conference at Harvard. Isaac Kohane on Flikr. https://www.flickr.com/photos/52786697@N00/16892093678
Precision Medicine Conference at Harvard. Isaac Kohane on Flikr. https://www.flickr.com/photos/52786697@N00/16892093678

A clear indication that precision medicine will blur the boundaries between diseases is the recent suggestion that the anti-diabetes drug Liraglutide may help to treat Alzheimer’s disease (AD). Liraglutide is a long-acting glucagon-like peptide-1 (GLP-1) receptor agonist which is effective in type 2 diabetes, a condition which is worlds apart from Alzheimer’s disease. So far removed from each other, it would be easy to dismiss any links as tenuous. But the headlines were emphatic: Drug used to treat diabetes could cure Alzheimer’s, and Diabetes drug could influence brain activity in Alzheimer’s. 

diabetes-1326964_1280

It is however no hype: there is evidence that Liraglutide may benefit people with Alzheimer’s disease. Trials in animal have shown that Liraglutide promotes neuronal survival, learning and memory, and reduces neuroinflammation and amyloid plaque formation. One such study is titled Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice. Beyond animals, small human trials have shown that Liraglutide improves brain glucose metabolism in Alzheimer’s disease.

beta-amyloid-plaques. vestque on Flikr. https://www.flickr.com/photos/35049835@N00/16867428955
beta-amyloid-plaques. vestque on Flikr. https://www.flickr.com/photos/35049835@N00/16867428955

Why should Liraglutide work so well in both diabetes and Alzheimer’s, diseases with apparently different pathologies? The answer lies in insulin resistance, the underlying mechanism of type 2 of diabetes; there is now evidence that insulin resistance contributes to dementia. If this is the case, Liraglutide, by improving glucose metabolism, could potentially treat both diabetes and Alzheimer’s disease.

Sugar Cubes. David Pace on Flikr. https://www.flickr.com/photos/63723146@N08/7164573186
Sugar Cubes. David Pace on Flikr. https://www.flickr.com/photos/63723146@N08/7164573186

To explore this potential further, there is now a large multicentre trial exploring the real benefit of Liraglutide in Alzheimer’s disease. Titled Evaluating Liraglutide in Alzheimer’s Disease or ELAD, it is recruiting people with mild disease, aged between 50-85 years old, and who do not have diabetes. As they say, watch this space!

Brain Aging. Kalvicio de las Nieves on Flikr. https://www.flickr.com/photos/118316968@N08/19444505382
Brain Aging. Kalvicio de las Nieves on Flikr. https://www.flickr.com/photos/118316968@N08/19444505382

Going back to the subject of precision medicine, why not visit my other blog, The Doctors Bookshelf where I will soon be reviewing The Innovators Prescription

Depression and the shrinking seahorses in the brain

Seahorses are beautiful creatures. The biologists convince us that seahorses are fish, even if they don’t look anything like fish. They also tell us, intriguingly, that seahorses are monogamous and the males do the childbearing.

By © Hans Hillewaert, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=22106851
By © Hans Hillewaert, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=22106851

But why is a neurologist talking about seahorses. It’s all in the name. The Latin name for seahorse is hippocampus , derived from hippos for horse, and kampos for sea monster. Where biologists saw fish, the ancients saw monsters. And you really can’t blame them…take a closer look

By Gervais et Boulart - Les poissons Gervais, H., Public Domain, https://commons.wikimedia.org/w/index.php?curid=19157222
By Gervais et Boulart – Les poissons Gervais, H., Public Domain, https://commons.wikimedia.org/w/index.php?curid=19157222

Deep in the brain is a structure also called the hippocampus, one on each side. The hippocampus plays a central role in memory, and it is considered by some to be the brain’s emotional centre.

By Images are generated by Life Science Databases(LSDB). - from Anatomography, website maintained by Life Science Databases(LSDB).You can get this image through URL below. 次のアドレスからこのファイルで使用している画像を取得できますURL., CC BY-SA 2.1 jp, https://commons.wikimedia.org/w/index.php?curid=7887124
By Images are generated by Life Science Databases(LSDB). – from Anatomography, website maintained by Life Science Databases(LSDB).You can get this image through URL below. 次のアドレスからこのファイルで使用している画像を取得できますURL., CC BY-SA 2.1 jp, https://commons.wikimedia.org/w/index.php?curid=7887124

It is no mystery why neuroanatomists name this important part of the brain after the seahorse, the resemblance is eerily striking.

By Hippocampus_and_seahorse.JPG: Professor Laszlo Seressderivative work: Anthonyhcole (talk) - Hippocampus_and_seahorse.JPG, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9451294
By Hippocampus_and_seahorse.JPG: Professor Laszlo Seressderivative work: Anthonyhcole (talk) – Hippocampus_and_seahorse.JPG, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9451294

Neurologists are passionate about the hippocampus for various reasons. In people with memory complaints, for example, hippocampal atrophy may predict the development of Alzheimer’s disease . A shrunken hippocampus is also seen in some forms of epilepsy. Neurologists therefore endlessly harangue their neuroradiology colleagues to look closely at their patients’ brain MRI scans, and to tell them that the hippocampus is shrunken…even if it’s just a little bit smaller. Unfortunately for the neuroradiologists, the MRI scans do not come colour-coded as in the illustrative scan below.

By Amber Rieder, Jenna Traynor - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=16393748
By Amber Rieder, Jenna Traynor – Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=16393748

This blog post is however about major depression, and not about epilepsy or dementia. Depression, that bad feeling we all feel every now and then is frustrating, but major depression is devastating. And we now know that it is accompanied by major alterations in the structure of the brain. And, yes, the changes are in the hippocampus. I got interested in this subject when I came across a piece in Neurology News reporting that people with depression have a smaller hippocampus. 

depression-242024_1280

The association of depression with hippocampal atrophy is however an old one. Proceedings of the National Academy of Science (PNAS) reviewed the relationship in an editorial from 2011 titled Depression, antidepressants, and the shrinking hippocampus. The author addressed the unresolved puzzle…which of the two came first. Reminiscent of the chicken and egg scenario, it is not clear if the hippocampal atrophy causes depression, or vice versa. To add to the puzzle, the paper conjectured the possibility of a third, unknown agent, causing both the depression and the small hippocampus.

Depression. Shattered.art66 on Flikr. https://www.flickr.com/photos/shattered_art/3369289879
Depression. Shattered.art66 on Flikr. https://www.flickr.com/photos/shattered_art/3369289879

This question was the focus of a meta-analysis published in Molecular Psychiatry this year. It reviewed the brain imaging data of 15 studies, involving about 1700 people with major depression. Titled Subcortical brain alterations in major depressive disorder, the authors confirmed the link between depression and hippocampal atrophy, and also showed that the shrinkage is worse in those who developed depression at an early age, and in those who have had frequent episodes of depression.

5 stages of grief (Depression) #4. COCOMARIPOSA on Flikr. https://www.flickr.com/photos/8463160@N08/1790592784
5 stages of grief (Depression) #4. COCOMARIPOSA on Flikr. https://www.flickr.com/photos/8463160@N08/1790592784

Does depression lead to hippocampal atrophy? The meta-analyses hinted so, but there were too many caveats for the authors to arrive at a definitive conclusion. They admit that more needs to be done to unravel depression….leaving the mystery of the shrinking seahorses to continue to another day.

 

What are the most iconic neurological disorders?

Neurology is a broad specialty covering a staggering variety of diseases. Some neurological disorders are vanishingly rare, but many are household names, or at least vaguely familiar to most people. These are the diseases which define neurology. Here, in alphabetical order, is my list of the top 60 iconic neurological diseases, with links to previous blog posts where available.

 

1. Alzheimer’s disease

By uncredited - Images from the History of Medicine (NLM) [1], Public Domain, https://commons.wikimedia.org/w/index.php?curid=11648572
By uncredited – Images from the History of Medicine (NLM) [1], Public Domain, https://commons.wikimedia.org/w/index.php?curid=11648572

2. Behcet’s disease

By Republic2011 - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=17715921
By Republic2011Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=17715921

3. Bell’s palsy

By http://wellcomeimages.org/indexplus/obf_images/69/f2/8d6c4130f4264b4b906960cf1f7e.jpgGallery: http://wellcomeimages.org/indexplus/image/M0011440.html, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=36350600
By http://wellcomeimages.org/indexplus/obf_images/69/f2/8d6c4130f4264b4b906960cf1f7e.jpgGallery: http://wellcomeimages.org/indexplus/image/M0011440.html, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=36350600

4. Brachial neuritis

5. Brain tumours

6. Carpal tunnel syndrome

7. Cerebral palsy (CP)

8. Cervical dystonia

9. Charcot Marie Tooth disease (CMT)

By http://wellcomeimages.org/indexplus/obf_images/66/09/4dfa424fe11bb8dc56b2058f04ba.jpgGallery: http://wellcomeimages.org/indexplus/image/V0026141.html, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=36578490
By http://wellcomeimages.org/indexplus/obf_images/66/09/4dfa424fe11bb8dc56b2058f04ba.jpgGallery: http://wellcomeimages.org/indexplus/image/V0026141.html, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=36578490

10. Chronic inflammatory demyelinating polyneuropathy (CIDP)

11. Cluster headache

12. Creutzfeldt-Jakob disease (CJD)

By Unknown - http://www.sammlungen.hu-berlin.de/dokumente/11727/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4008658
By Unknownhttp://www.sammlungen.hu-berlin.de/dokumente/11727/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4008658

13. Duchenne muscular dystrophy (DMD)

By G._Duchenne.jpg: unknown/anonymousderivative work: PawełMM (talk) - G._Duchenne.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=9701531
By G._Duchenne.jpg: unknown/anonymousderivative work: PawełMM (talk) – G._Duchenne.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=9701531

14. Encephalitis

15. Epilepsy

16. Essential tremor

17. Friedreich’s ataxia

By Unknown - http://www.uic.edu/depts/mcne/founders/page0035.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3960759
By Unknownhttp://www.uic.edu/depts/mcne/founders/page0035.html, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3960759

18. Frontotemporal dementia (FTD)

19. Guillain-Barre syndrome (GBS)

By Anonymous - Ouvrage : L'informateur des aliénistes et des neurologistes, Paris : Delarue, 1923, Public Domain, https://commons.wikimedia.org/w/index.php?curid=28242077
By Anonymous – Ouvrage : L’informateur des aliénistes et des neurologistes, Paris : Delarue, 1923, Public Domain, https://commons.wikimedia.org/w/index.php?curid=28242077

20. Hashimoto encephalopathy

21. Hemifacial spasm

22. Horner’s syndrome

By Unknown - http://ihm.nlm.nih.gov/images/B15207, Public Domain, https://commons.wikimedia.org/w/index.php?curid=19265414
By Unknownhttp://ihm.nlm.nih.gov/images/B15207, Public Domain, https://commons.wikimedia.org/w/index.php?curid=19265414

23. Huntington’s disease (HD)

https://en.wikipedia.org/wiki/George_Huntington#/media/File:George_Huntington.jpg
https://en.wikipedia.org/wiki/George_Huntington#/media/File:George_Huntington.jpg

24. Idiopathic intracranial hypertension (IIH)

25. Inclusion body myositis (IBM)

26. Kennedy disease

27. Korsakoff’s psychosis

28. Lambert-Eaton myasthenic syndrome (LEMS)

29. Leber’s optic neuropathy (LHON)

30. McArdles disease

31. Meningitis

32. Migraine

33. Miller-Fisher syndrome (MFS)

By J3D3 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=34315507
By J3D3Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=34315507

34. Motor neurone disease (MND)

35. Multiple sclerosis (MS)

36. Multiple system atrophy (MSA)

37. Myasthenia gravis (MG)

38. Myotonic dystrophy

39. Narcolepsy

40. Neurofibromatosis (NF)

41. Neuromyelitis optica (NMO)

42. Neurosarcoidosis

43. Neurosyphilis

44. Parkinson’s disease (PD)

45. Peripheral neuropathy (PN)

46. Peroneal neuropathy

47. Progressive supranuclear palsy (PSP)

48. Rabies

49. Restless legs syndrome (RLS)

50. Spinal muscular atrophy (SMA)

51. Stiff person syndrome (SPS)

52. Stroke

53. Subarachnoid haemorrhage (SAH)

54. Tension-type headache (TTH)

55. Tetanus

56. Transient global amnesia (TGA)

57. Trigeminal neuralgia

58. Tuberous sclerosis

59. Wernicke’s encephalopathy

By J.F. Lehmann, Muenchen - IHM, Public Domain, https://commons.wikimedia.org/w/index.php?curid=9679254
By J.F. Lehmann, Muenchen – IHM, Public Domain, https://commons.wikimedia.org/w/index.php?curid=9679254

60. Wilson’s disease

By Carl Vandyk (1851–1931) - [No authors listed] (July 1937). "S. A. Kinnier Wilson". Br J Ophthalmol 21 (7): 396–97. PMC: 1142821., Public Domain, https://commons.wikimedia.org/w/index.php?curid=11384670
By Carl Vandyk (1851–1931) – [No authors listed] (July 1937). “S. A. Kinnier Wilson“. Br J Ophthalmol 21 (7): 396–97. PMC: 1142821., Public Domain, https://commons.wikimedia.org/w/index.php?curid=11384670

===============================

The Neurology Lounge has a way to go to address all these diseases, but they are all fully covered in neurochecklists. In a future post, I will look at the rare end of the neurological spectrum and list the 75 strangest and most exotic neurological disorders.

What are the most controversial questions in neurology?

Uncertainty and doubt abound in Neurology. There are many evidence-free areas where experts rub each other the wrong way. These controversies are big and occur in all neurology subspecialties. Controversy-busters have tried for about a decade to iron out these wrinkles on neurology’s face, but the unanswered questions remain. This is why there is a 10th World Congress of Controversies in Neurology (CONy) holding in Lisbon this year.

I want to assure you I have no conflict of interest to declare in this blog. My interest is to explore  which questions have plagued this conference over the last 10 years to pick out the most controversial topics in neurology. To do this I reviewed all previous conference programs and focused on the items that were slated for debate. I looked for practical topics that have remained unresolved, or are just emerging. Here are my top controversial neurological questions:

Raccoon argument II. Tambako The Jaguar on Flikr. https://www.flickr.com/photos/tambako/7460999402
Raccoon argument II. Tambako The Jaguar on Flikr. https://www.flickr.com/photos/tambako/7460999402

 

1st CONy 2007 (Berlin, Germany)

  • Clinically isolated syndromes (CIS): To treat or not to treat
  • Is stem cell therapy an imminent treatment in advanced multiple sclerosis (MS)?
  • Vascular cognitive impairment is a misleading concept?
  • Is mild cognitive impairment a misleading concept?

 

2nd CONy 2008 (Athens, Greece)

  • Can physical trauma precipitate multiple sclerosis?
  • Should patients with Parkinson’s disease (PD) be treated in the pre-motor phase?
  • What is the first line therapy for chronic inflammatory demyelinating polyneuropathy (CIDP)?
  • Is intravenous immunoglobulin (IVIg) effective in chronic myasthenia gravis (MG)?
  • Tau or ß-amyloid immunotherapy in Alzheimer’s disease (AD)?
  • Chronic fatigue syndrome is an organic disease and should be treated by neurologists?

 

3rd CONy 2009 (Prague, Czech Republic)

  • Should cerebrospinal fluid (CSF) be tested in every clinically isolated syndrome?
  • Can we prevent multiple sclerosis (MS) by early vitamin D supplementation and EBV vaccination?
  • Does Parkinson’s disease (PD) have a prion-like pathogenesis?
  • Patients with medication overuse headache should be treated only after analgesic withdrawal?

 

 

4th CONy 2010 (Barcelona, Spain)

  • Camptocormia in parkinson’s disease (PD): Is this dystonia or myopathy?
  • Does chronic venous insufficiency play a role in the pathogenesis of multiple sclerosis (MS)?
  • IVIg or immunosuppression for long-term treatment of CIDP?

 

5th CONy 2011 (Beijing, China)

  • Is sporadic Parkinson’s disease etiology predominantly environmental or genetic?
  • Is multiple sclerosis (MS) an inflammatory or a primarily neurodegenerative disease?
  • Are the new multiple sclerosis oral medications superior to conventional therapies?
  • Is bilateral transverse venous sinus stenosis a critical finding in idiopathic intracranial hypertension (IIH)?

 

6th CONy 2012 (Vienna, Austria)

  • Will there ever be a valid biomarker for Alzheimer’s disease (AD)?
  • Is amyloid imaging clinically useful in Alzheimer’s disease (AD)?
  • Do functional syndromes have a neurological substrate?
  • Should blood pressure be lowered immediately after stroke?
  • Migraine is primarily a vascular disorder?

 

 

7th CONy 2013 (Istanbul, Turkey)

  • Is intravenous thrombolysis the definitive treatment for acute large artery stroke?
  • Atrial fibrillation related stroke should be treated only with the new anticoagulants?
  • Is the best treatment for chronic migraine botulinum toxin?
  • IS CGRP the key molecule in migraine?
  • Is chronic cluster headache best treated with sphenopalatine ganglion (SPG) stimulation?
  • When should deep brain stimulation (DBS) be initiated for Parkinson’s disease?
  • Do interferons prevent secondary progressive multiple sclerosis (SPMS)?
  • Is deep brain stimulation (DBS) better than botulinum toxin in primary dystonia?
  • Are present outcome measures relevant for assessing efficacy of disease modifying therapies in multiple sclerosis (MS)?
  • Should radiologically isolated syndromes (RIS) be treated?
  • Does genetic testing have a role in epilepsy management?
  • Should cortical strokes be treated prophylactically against seizures?
  • Should enzyme-inducing antiepileptic drugs (AEDs) be avoided?
  • EEG is usually necessary when diagnosing epilepsy

 

8th CONy 2014 (Berlin, Germany)

  • Is late-onset depression prodromal neurodegeneration?
  • Does Parkinson’s disease begin in the peripheral nervous system?
  • What is the best treatment in advanced Parkinson’s disease?
  • Are most cryptogenic epilepsies immune mediated?
  • Should epilepsy be diagnosed after the first unprovoked seizure?
  • Do anti-epileptic drugs (AEDs) contribute to suicide risk?
  • Should the ketogenic diet be prescribed in adults with epilepsy?
  • Do patients with idiopathic generalized epilepsies require lifelong treatment?
  • Cryptogenic stroke: Immediate anticoagulation or long-term ECG recording?
Southern Chivalry: Argument Vs Clubs. elycefeliz on Flikr. https://www.flickr.com/photos/elycefeliz/6271932825
Southern Chivalry: Argument Vs Clubs. elycefeliz on Flikr. https://www.flickr.com/photos/elycefeliz/6271932825

 

9th CONy 2015 (Budapest, Hungary)

  • Is discontinuation of disease-modifying therapies safe in  long-term stable multiple sclerosis?
  • Is behavioral therapy necessary for the treatment of migraine?
  • Which is the first-line therapy in cases of IIH with bilateral papilledema?
  • Should patients with unruptured arterio-venous malformations (AVM) be referred for intervention?
  • Should survivors of hemorrhagic strokes be restarted on oral anticoagulants?
  • Will stem cell therapy become important in stroke rehabilitation?
  • Do statins cause cognitive impairment?

 

10th CONy 2016 (Lisbon, Portugal)

  • Which should be the first-line therapy for CIDP? Steroids vs. IVIg
  • Should disease-modifying treatment be changed if only imaging findings worsen in multiple sclerosis?
  • Should disease-modifying therapies be stopped when secondary progressive MS develops?
  • Should non-convulsive status epilepsy be treated aggressively?
  • Does traumatic chronic encephalopathy (CTE) exist?
  • Does corticobasal degeneration (CBD) exist as a clinico-pathological entity?
  • Is ß-amyloid still a relevant target in AD therapy?
  • Will electrical stimulation replace medications for the treatment of cluster headache?
  • Carotid dissection: Should anticoagulants be used?
  • Is the ABCD2 grading useful for clinical management of TIA patients?
  • Do COMT inhibitors have a future in treatment of Parkinson’s disease?

 

Debate Energetico. Jumanji Solar on Flikr. https://www.flickr.com/photos/jumanjisolar/5371921203
Debate Energetico. Jumanji Solar on Flikr. https://www.flickr.com/photos/jumanjisolar/5371921203

 

Going through this list, I feel reassured that the experts differ in their answers to these questions? The acknowledgement of uncertainty allows us novices to avoid searching for non-existent black and white answers. It is however also unsettling that I thought some of these questions had been settled long ago. It goes to show that apparently established assumptions are not unshakable?

Do you have the definitive answers to resolve these controversies? Are there important controversies that are missing here? Please leave a comment

 

How bright is the future for Alzheimer’s disease?

Alzheimer’s disease (AD) is scary. It is the most prevalent cause of dementia, and the name strikes terror, especially to those with a close family history of the condition. It is disturbing when a person loses the concept of ‘self’. It is devastating when parents fail to recognise their children.

Any progress in finding the cause or the cure for this neurodegenerative disease should therefore be celebrated. Following on my previous post, Alzheimer’s disease: a few curious things, here are my top 10 breakthroughs giving hope for Alzheimer’s disease.

Deep brain stimulation (DBS)

By Andreashorn - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=40251125
By AndreashornOwn work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=40251125

 

I have waxed lyrical on the widening influence of neurostimulation in the context of epilepsy, stroke and vagus nerve stimulation (VNS). I was however taken aback by the potential role of deep brain stimulation (DBS) in dementia. This headline from Alzheimers.net reports the Benefits of Deep Brain Stimulation for Alzheimer’sand refers to a study published in eLife. This doesn’t sound a very ‘peer-reviewed’ source, but the title is scientific enough: Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats. I should warn you here that most of the studies in this post involve furry little creatures! The study reports that chronic electrical stimulation of the brain increases the activity of memory-related genes, and this in turn increases the number of memory nerves in the hippocampus. Alzheimers.net puts it bluntly-Using Deep Brain Stimulation to Create New Brain Cells.

Iron-reducing treatments

By Vaccinationist - PubChem, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=43392593
By VaccinationistPubChem, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=43392593

 

Based on a premise that high brain iron levels are related to the pathology in Alzheimer’s disease, researchers have looked at iron reducing therapies. This isn’t a new idea because an article in Lancet from 1991 was titled Intramuscular desferrioxamine in patients with Alzheimer’s disease. This study showed that the progression of Alzheimer’s disease could be slowed down by reducing the iron levels in the brain. New Scientist has brought this therapeutic strategy back into contention in its article titled Iron levels in brain predict when people will get Alzheimer’s. The article tantalisingly refers to a link between high iron levels and ApoE4, a gene associated with Alzheimer’s disease. Watch this space.

Ultrasound therapy

By Unknown - Popular Science Monthly Volume 13, Public Domain, https://commons.wikimedia.org/w/index.php?curid=11085835
By UnknownPopular Science Monthly Volume 13, Public Domain, https://commons.wikimedia.org/w/index.php?curid=11085835

 

New Alzheimer’s treatment fully restores memory function, so blares this headline in Science Alert. It refers to a study in mice which shows that focused therapeutic ultrasound stimulates microglia, the cells responsible for clearing the brain’s waste products. The paper, published in Science Translational Medicine, is titled Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. The authors report that that by clearing amyloid, this technique restored memory in about 75% of mice models of Alzheimer’s disease. Human trials must surely beckon.

Dampening amyloid production

By Nephron - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12274694
By NephronOwn work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=12274694

 

The idea of dampening the production of amyloid comes from the discovery of a new chemical pathway in the brain; I didn’t realise there were any more pathways left to discover! My ignorance was dispelled by this article in MNT titled A newly discovered molecular feedback process may protect the brain against Alzheimer’s. The article discusses WAVE-1, a protein which is central to a pathway involved in ß-amyloid production. How could scientists could suppress this pathway and improve the clearance of ß-amyloid? By somehow enhancing an inhibitory feedback loop thereby reducing WAVE-1 production. The scientific details are published in Nature Medicine titled APP intracellular domain–WAVE1 pathway reduces amyloid-β production

Monoclonal antibodies

B0007277 Monoclonal antibodies Anna Tanczos. Wellcome Images images@wellcome.ac.uk http://images.wellcome.ac.uk
B0007277 Monoclonal antibodies
Anna Tanczos. Wellcome Images
images@wellcome.ac.uk
http://images.wellcome.ac.uk

 

It would be surprising if monoclonal antibodies did not crop up in this post, being the rage in many other diseases. The monoclonal antibody raising hopes in Alzheimer’s disease is Solanezumab. I came across this in Russia Today (yes…RT) in an article titled Alzheimer’s breakthrough? First ever drug found that may slow disease. ‘First ever’ is obviously hype, but there does seem to be some benefit of Solanezumab, even if this is restricted to those with early disease.  The phase 3 trial of Solanezumab, called EXPEDITION 3, will study this effect further. More hope, less hype!

Boosting the brain’s immune system

B0007277 Monoclonal antibodies Anna Tanczos. Wellcome Images images@wellcome.ac.uk http://images.wellcome.ac.uk
B0007277 Monoclonal antibodies
Anna Tanczos. Wellcome Images
images@wellcome.ac.uk
http://images.wellcome.ac.uk

 

Microglia, the brain’s waste disposal cells, also play a key role in it’s immune system. In this way they protect the brain from damage by ß-amyloid. This immune function is however countered by EP2, a prostaglandin receptor protein found on the surface of the microglia. In other words EP2 functions to restrict the activity of the microglia. Researchers have now shown that the nuisance effect of EP2 could be blocked, as reported in an article titled Prostaglandin signaling suppresses beneficial microglial function in Alzheimer’s disease models, and published in Journal of Clinical Investigation. Enhancing the activity of microglia therefore raises hope for the treatment for Alzheimer’s disease… if it could be translated to humans.

Neurotrophic factors

Brain Aging. Kalvicio de las Nieves on Flikr. https://www.flickr.com/photos/118316968@N08/19444505382
Brain Aging. Kalvicio de las Nieves on Flikr. https://www.flickr.com/photos/118316968@N08/19444505382

 

What if we could boost the activity of cells that have not yet been affected by Alzheimer’s disease? An experimental drug called J147 might just do that. According to researchers, J147 is a neurotrophic drug which enhances nerve activity in mice. The research, appropriately published in the journal Aging, shows that J147 improves cognitive function in mice which have been modified to age fast. The article is titled A comprehensive multiomics approach toward understanding the relationship between aging and dementia. I personally prefer the headline in Neuroscience News which simply says Experimental Alzheimer’s Drug Slows Clock on Key Aspects of Aging. Too soon to speculate, but could we be talking age reversal here? Perhaps competition for klotho.

Enhancing proteasome activity

By User:KGH - User:KGH, <a href="http://creativecommons.org/licenses/by-sa/3.0/" title="Creative Commons Attribution-Share Alike 3.0">CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=552918
By User:KGHUser:KGH, <a href=”http://creativecommons.org/licenses/by-sa/3.0/&#8221; title=”Creative Commons Attribution-Share Alike 3.0 
“>CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=552918

 

We can’t get too far away from waste clearance in this post. This time it’s a drug called Rolipram which seems to enhance the brains waste disposal system. It does this by increasing the activity of proteasomes. Neuroscience News describes a proteasome as ‘a hollow, cylindrical structure which chews up defective proteins into smaller pieces that can be recycled into new proteins needed by a cell‘. The scientific paper is published in Nature Medicine titled Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. The authors show that Rolipram also reduces the levels of tau, another toxic product involved in Alzheimer’s disease. For an easier read see the Neuroscience News article titled Slowing Alzheimer’s by Speeding Up Brain’s Waste Disposal.

Gene therapy

There is no getting away from it, and gene therapy had to crop up in this post. And yes, it may have a role in the future of Alzheimer’s disease. Researchers genetically treated 10 Alzheimer’s disease patients using nerve growth factor (NGF) gene, and then waited and waited, …and then studied the brains of the subjects. They reported their findings the Journal of the American Medical Association (JAMA) under the title Nerve Growth Factor Gene Therapy Activation of Neuronal Responses in Alzheimer Disease. The details of the study are rather complicated, but it appears the nerve growth factor treatment triggered nerve growth. Doesn’t sound like rocket science but imagine the potential. I only wished they had used a more straightforward title. I prefer the layman’s version in The Guardian simply titled Gene therapy rescues dying cells in the brains of Alzheimer’s patients. Scientific journals really need better headline writers!

Reprogramming astroglia

A cocktail mixture which transforms the brain’s supporting cells into proper nerve cells? Not science fiction it seems. A group of scientists have developed a mixture which could reprogram glial cells into functional brain cells. I came across this in Neurology Times under the title Transforming Glial Cells. For a change, the original research paper is well headlined; it is published in Cell under the title Small Molecules Efficiently Reprogram Human Astroglial Cells into Functional Neurons. The authors show that the cocktail of nine small molecules do the trick by inhibiting glial pathways and activating neuronal pathways. And this all happens within 8-10 days! Too good to be true? Hopefully not.

 

Looking for more? Here are 13 headlines to further raise the spirits of people with Alzheimer’s disease:

Please share your thoughts

Alzheimer’s disease: a few curious things

This is a prelude to my upcoming post, How Bright is the Future for Alzheimer’s Disease? In writing that post I came across a few curious reports about Alzheimer’s disease. I thought these reports were not ground-breaking enough to impact on the future of Alzheimer’s disease. They were however all interesting and thought I should share them.

How does your sleep posture increase your risk of Alzheimer’s disease?

By by Reggaeman - photo by Reggaeman, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1042279
By by Reggaeman – photo by Reggaeman, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1042279

 

Could sleeping on your side help to prevent Alzheimer’s disease? So suggests a study published in Journal of Neuroscience titled The Effect of Body Posture on Brain Glymphatic Transport. What on earth is the glymphatic system!? Wikipedia says it’s a functional waste clearance pathway for the mammalian central nervous system. The authors showed that rats lying on their side cleared brain waste better than if when lying on their backs or fronts. And this waste includes β amyloid, one culprit behind Alzheimer’s disease. If only things were this simple. But just so you know, I now sleep on my side!

Which fatigue-banishing medication may improve Alzheimer’s disease?

This is how to take an exam. Dan Tentler on Flikr. https://www.flickr.com/photos/vissago/3593809008
This is how to take an exam. Dan Tentler on Flikr. https://www.flickr.com/photos/vissago/3593809008

 

Still in slumber-mode, a recent article suggests that the medication, Modafinil, improves cognition. Modafinil is a drug familiar to neurologists who use it to treat conditions typified by excessive sleep, as in narcolepsy. It is also an alerting drug which improves fatigue in conditions such as multiple sclerosis (MS). The article is a systematic review of the evidence on the effect of Modafinil on cognition. It is published in the journal, European Neuropsychopharmacology under the title Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects. Curious, but I don’t see neurologists prescribing this for Alzheimer’s disease anytime soon.

Which fruit juice should you drink to protect yourself from Alzheimer’s disease?

This may seem like a newspaper headline but it is a scientific research published in European Journal of Nutrition titled Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. In the study, 49 people with mild to moderate dementia were given anthocyanin-rich cherry juice over 12 weeks. The authors reported that cherry juice significantly improved verbal fluency, and both long- and short-term memory. Cherry juice is supposedly rich in anthocyanin, a flavonoid, and this is a cognitive enhancer. I wouldn’t run out and stock on cherry juice yet: the number of participants in the study was small, and the duration of the study too small, to make any conclusions. But a curious finding none-the-less.

Which bugs are linked to Alzheimer’s disease?

This is probably the most curious of the questions. The headline from Scientific Reports says Different Brain Regions are Infected with Fungi in Alzheimer’s Disease. The authors of the report show that the brains of people with Alzheimer’s disease, unlike the brains of control subjects, are infiltrated with fungi. If you didn’t have a reason to keep away from fungi before, now you have a curious one.

Brain Aging. Kalvicio de las Nieves on Flikr. https://www.flickr.com/photos/118316968@N08/19444505382
Brain Aging. Kalvicio de las Nieves on Flikr. https://www.flickr.com/photos/118316968@N08/19444505382

 

For the more ground-breaking stuff, watch out for my next post titled How Bright is the Future for Alzheimer’s Disease?