What is so distinctive about anti-MUSK myasthenia gravis?

Myasthenia gravis (MG) is an iconic neurological disorder. It is classical in its presentation, weakness setting in with exertion and improving with rest. This fatigability is demonstrable in the laboratory when repetitive nerve stimulation (RNS) of the muscles results in a progressively decremental response. Clinically, myasthenia gravis is often a benign disorder which restricts itself to the muscles of the eyes: this ocular MG manifests just with droopy eyelids (ptosis) and double vision (diplopia). At the extreme however is generalised MG, a severe and life-threatening condition that justifies its grave appellation

By Posey & Spiller – Posey & Spiller: Fatigue (Ptosis) in a patient with MG (ed. 1904), Public Domain, Link

Myasthenia gravis depletes the energy reserve of muscles, something which is entirely dependent on acetylcholine (ACh), a chemical released at nerve endings. After release, ACh traverses the neuromuscular junction (NMJ) to attach itself to the acetylcholine receptor (AChR), which is comfortably nestled on the surface of the muscle. This binding of chemical to receptor is a significant event, setting sparks flying, and muscles contracting. In myasthenia gravis, this fundamental process is rudely disrupted by the onslaught of acetylcholine receptor antibodies. These aggressive AChR antibodies, produced by the thymus gland in the chest, vent their rage by competitively binding to the receptor, leaving acetylcholine high and dry. Eventually, the rampaging antibodies destroy the receptor in an act of unjustified savagery.

Drosophilia Neuron. NICHD on Flickr. https://www.flickr.com/photos/nichd/29596368551/

In tackling myasthenia gravis, it is no wonder that neurologists first have to hunt down the ferocious AChR antibodies. They whisk off an aliquot of serum to a specialist laboratory, but waste no time in planning a counteroffensive, confident that the test will return as positive. The strategy is to boost the level of acetylcholine in the NMJ, tilting the balance in favour of ACh against the antibodies. The tactic is to zealously despatch a prescription for a drug that will block acetylcholine esterase inhibitor, the enzyme which breaks down acetylcholine. The neurologist then closely observes the often dramatic response, one of the most gratifying in clinical medicine; one minute as weak as a kitten, the next minute as strong as an ox. MG is therefore one disorder which debunks the wicked jibe that neurologists know so much…but do so little to make their patients better!

Drosophilia Neuromuscular Junction. NICHD on Flickr. https://www.flickr.com/photos/nichd/34754479075

Unfortunately for the neurologist, every now and then, the AChR antibody test result comes back as negative. In the past, the dumbfounded and befuddled, but nevertheless undaunted neurologist, will march on, battling a diagnosis of antibody-negative MG. Nowadays however, this not a comfortable diagnosis to make because AChR antibody is no longer the only game in town. We now know that there are many other antibodies that are jostling for commanding positions in the anti-myasthenia coalition. These include anti LRP4, cotarctin, titin, agrin, netrin 1, VGKC, and ryanodine. However, the clear frontrunner in this melee is anti-MUSK antibody, responsible for 30-50% of MG in which there are no AChR antibodies.

By PyMol, CC0, Link

Anti MUSK syndrome has many distinguishing features that set it apart from the run-of-the-mill myasthenia gravis. Below are five distinctive markers of anti-MUSK syndrome:

  1. Subjects with anti-MUSK syndrome are typically middle-aged women in their 3rd or 4th decades. This is younger than the usual age of people with AChR MG. Indeed neurologists now recognise typical myasthenia as a disease of older people.
  2. People with anti-MUSK syndrome present with acute and prominent involvement of head and neck muscles. This results in marked swallowing and breathing difficulties. They are therefore at a higher risk of myasthenia crisis.
  3. Single fiber electromyogram (sfEMG), a specific and reliable neurophysiological test of MG, is often normal in anti-MUSK syndrome. This is partly because the limb muscles are usually spared in anti MUSK syndrome.
  4. People with anti-MUSK myasthenia often do not benefit from, nor do they tolerate, the  acetylcholinesterase inhibitors which are used to treat MG. Indeed, these drugs may worsen anti-MUSK syndrome.
  5. Thymectomy, removal of the thymus gland, is not beneficial in people with anti-MUSK syndrome, unlike its usefulness in AChR MG.
Thymus gland 2. RachelHermosillo on Flickr. https://www.flickr.com/photos/rachelhermosillo/5388860587

All this is just the tip of the evolving myasthenia gravis iceberg. You may explore more of myasthenia in our previous blog posts:

How is innovative neurology research energising myasthenia?

What is the startling research unsettling the treatment of myasthenia gravis?

What is the relationship of pregnancy to myasthenia gravis?

Is Zika virus infection a risk factor for myasthenia gravis?

What does the EMG show in LRP4 myasthenia gravis?

What’s evolving at the cutting-edge of autoimmune neurology?

What are the most iconic neurological disorders?

***

You may also explore anti-MUSK, and all the other myasthenia gravis subtypes, in neurochecklists. Go on…you know you want to know more!

Antibody lights. Isabelle on Flickr. https://www.flickr.com/photos/diamondgeyser/456900567/

 

What is the value of temporal artery biopsy in the diagnosis of GCA?

Giant cell arteritis (GCA) is a nasty inflammatory disorder that affects the large arteries. Because it characteristically involves the temporal artery, this form of vasculitis is also referred to as temporal arteritis. It usually affects people over the age of 50 years and manifests with sudden onset headache, scalp pain, and a thick, tender temporal artery. GCA is often accompanied by polymyalgia rheumatica (PMR) , a painful condition of the joints and muscles. The active systemic inflammation in GCA is often detected by the erythrocyte sedimentation rate (ESR) or C-reactive protein (CRP) tests. These distinguishing features constitute most of the diagnostic criteria for GCA.

By National Institute of Standards and Technology – https://www.flickr.com/photos/usnistgov/5828207621/, Public Domain, Link

Most people with GCA however do not have all the ‘classical’ features of the disease. A high index of suspicion is therefore required to sniff out the duplicitous miscreant. It is particularly imperative to make the diagnosis as early as possible to prevent the dreaded complications of GCA, sudden blindness and stroke. The treatment of GCA, implemented according to established treatment guidelines, involves several months of oral steroids, drugs which cause immune suppression and a host of other side effects. It is therefore essential that the diagnosis of GCA is made correctly to avoid putting the patient on a long, risky, and unnecessary treatment.

By Henry Vandyke CarterHenry Gray (1918) Anatomy of the Human Body (See “Book” section below)Bartleby.com: Gray’s Anatomy, Plate 508, Public Domain, Link

The conventional method of establishing the definitive diagnosis of GCA is by performing a temporal artery biopsy. This involves taking a short segment of the temporal artery as it traverses the temple. This procedure however only confirms the diagnosis of GCA in 1335% of people with the condition. One reason the biopsy has such a poor sensitivity is that it is often performed after treatment has already commenced. Another reason the biopsy is often normal is that the inflammation in GCA occurs in patches, sparing large segments of the artery. Don’t even think about it-taking a longer biopsy segment does not increase the yield of temporal artery biopsy. Put another way, “specimen length is not associated with diagnostic yield of temporal artery biopsy.

By NephronOwn work, CC BY-SA 3.0, Link
What then is the value of the temporal artery biopsy in the diagnosis of GCA? This is the question posed by Bowling et al in their incisive paper titled Temporal artery biopsy in the diagnosis of giant cell arteritis: does the end justify the means? They reviewed 129 temporal artery biopsies and found that the clinical diagnosis of GCA was confirmed in only 13% of cases. Furthermore, the outcome of the biopsy rarely ever influenced the treatment; 87% of those with a normal biopsy result still continued their treatment. The miffed authors therefore rhetorically, and indignantly, asked: “can we justify invasive surgery to all patients on histological grounds when the results may not alter management?” 
Ipswich, Waterfront, Ipswich Campus, The Big Question Mark Sculpture. Martin Pettitt on Flikr. https://www.flickr.com/photos/mdpettitt/8671901426

This is an entirely reasonable question especially because there are other more accurate and less invasive ways of establishing the diagnosis of GCA. These include:

But the answer to the authors’ rhetorical question is anyones guess. It is a sad tradition of medicine that studies such as these take ages to change practice. Indeed I predict the the temporal artery biopsy will sidestep this minor hurdle and simply continue its long and agonising reign. Despair!
By No machine-readable author provided. Spekta assumed (based on copyright claims). – No machine-readable source provided. Own work assumed (based on copyright claims)., Public Domain, Link
You can at least read more on GCA in my previous blog post titled Advances in the management of giant cell arteritis. You may also explore these comprehensive neurochecklistsGiant cell arteritis (GCA): clinical featuresand Giant cell arteritis (GCA): diagnosis and management.

 

FDG. TRIUMF Lab on Flikr. https://www.flickr.com/photos/triumflab/8232448893

 

Do statins really increase the risk of Parkinson’s disease?

Statins are famous, and their fame lies in their ability to bust cholesterol, the villain in many medical disorders such as heart attack (myocardial infarction) and stroke. Some may add that statins are infamous, and this is partly because of their side effects such as muscle pain. Love them or hate them, we can’t get away from statins…even as the debate rages about their benefits and downsides.

By ChiltepinsterOwn work, CC BY-SA 3.0, Link

It is not surprising therefore that the statin debate will filter into neurology. The sticking point here however has nothing to do with cholesterol busting, but all to do with whether statins increase or reduce the risk of developing Parkinson’s disease (PD). Strange as it may seem, statins and PD have a long history. And a positive one generally, I hasten to add. There is a large body of evidence to suggest a protective effect of statins on PD as reflected in the following studies:

  1. Confounding of the association between statins and Parkinson disease: systematic review and meta-analysis 
  2. Statin therapy prevents the onset of Parkinson disease in patients with diabetes
  3. Statin use and risk of Parkinson’s disease: A meta-analysis 
  4. Statin use and its association with essential tremor and Parkinson’s disease
  5. Statin use and the risk of Parkinson’s disease: an updated meta-analysis
  6. Long-term statin use and the risk of Parkinson’s disease
  7. Discontinuation of statin therapy associated with Parkinson’s disease
Modeling the Molecular Basis of Parkinson’s Disease. Argonne National Laboratory on Flikr https://www.flickr.com/photos/argonne/4192798573

It was therefore with some consternation that a recent study, published in the journal Movement Disorders, really put the cat among the pigeons. The paper is titled:

Statins may facilitate Parkinson’s disease: insight gained from a large, national claims database,

The authors of this paper set out to investigate ‘the controversy surrounding the role of statins in Parkinson’s disease’. In this retrospective analysis of over 2,000 people with PD, and a similar number of control subjects, the authors found that statins significantly increased the risk of developing PD. This is clearly a conclusion looking for a fight!

By Col. Albert S. Evans – internet archives, Public Domain, Link

I must admit I was totally unaware there was any controversy about statins and PD. I was therefore curious to find out what studies are out there fuelling it. Which other trials have bucked the trend and reported an increased risk of PD from statins? And where best to find the answers but in PubMed, the repository of all human knowledge! And I found that there were only a few studies that did not report a protective effect of statins on PD, and these studies concluded, quite reasonably, that they found no relationship between PD and statins. Here are a few of the studies:

  1. Statin adherence and the risk of Parkinson’s disease: A population-based cohort study. 
  2. Use of statins and the risk of Parkinson’s disease: a retrospective case-control study in the UK. 
  3. Statin use and the risk of Parkinson disease: a nested case control study. 

These papers reporting the absence of evidence seem happy to engage in an amicable debate to resolve the question.

By DavidKF1949Own work, CC BY-SA 3.0, Link

One study however stood out like a sore thumb because it positively reported a negative effect of statins on PD (try and work that out!). This 2015 study, also published in Movement Disorders, is titled Statins, plasma cholesterol, and risk of Parkinson’s disease: a prospective study. The paper concludes that “statin use may be associated with a higher PD risk, whereas higher total cholesterol may be associated with lower risk“. Not only are the authors arguing that statins are bad for PD, they are also suggesting that cholesterol is good! This is a paper that was itching for fisticuffs.

By Jan SteenWeb Gallery of Art:   Image  Info about artwork, Public Domain, Link

What is a jobbing neurologist to do? What are the millions of people on statins to do? Whilst awaiting further studies, I will say stay put. Go with the bulk of the evidence! And keep track of The Simvastatin Trial, funded by The Cure Parkinson’s Trust. This trial is looking at the benefit of statins in slowing down PD. And surely, very soon, the science will lead to a resolution of the argument-all you need to do is keep track of everything PD in Neurochecklists.

By Léon Augustin Lhermittehttp://wellcomeimages.org/indexplus/obf_images/fc/7f/643258ab30237374aaea5ac15757.jpgGallery: http://wellcomeimages.org/indexplus/image/L0006244.html, CC BY 4.0, Link

 

The 13 most dreadful neurological disorders…and the groups standing up to them

Neurology embodies some of the most dreadful diseases known to man. Every neurological disorder is disheartening, each characterised by unique frustrations for patients and their families. It is difficult to quantify the distress and misery these afflictions impose on their victims, and even harder to appreciate the despair and anguish they evoke in those who care for them.

Brain Art. Ars Electronica on Flikr. https://www.flickr.com/photos/arselectronica/7773544158

It is clearly hard to compare the impact of different neurological diseases. Some neurological disorders however stand out because of the consternation their names evoke, and the terror that follows in their wake. These diseases come with unimaginable physical and psychological burdens, and crushing demands on human and material resources. They impose either a debilitating morbidity, or a hasty mortality.

Neural pathways in the brain. NICHD on Flikr. https://www.flickr.com/photos/nichd/16672073333

The nervous system ailments in the list below pose exacting therapeutic challenges, resistant as they are to all attempts at treatment or cure. This list sets out to emphasise the urgency for neuroscience to find a remedy for each of them, but it does not intend to belittle the horror of the disorders omitted from it. The choice of the number 13 is, sadly, self-evident. Here then are the top 13 most dreadful neurological disorders…all with gold links to the associations helping to defeat them.

Working Brain. Gontzal García del Caño on Flikr. https://www.flickr.com/photos/euskalanato/2052487054

Ataxia

Ataxia, in lay terms, is incoordination. This typically manifests as an unsteady gait and clumsiness. Ataxia converts all activities of daily living into burdensome chores. Whilst many types of ataxia are preventable or reversible, primary ataxias are progressive and carry a dismal outlook. In this category are Spinocerebellar ataxia (SCA)Friedreich’s ataxia, and Ataxia telangiectasia. You may read more about ataxia in these previous blog posts: The 43 spinocerebellar ataxias: the complete checklistsOld drugs, new roles?, and Will Riluzole really be good for cerebellar ataxia?

Brain tumours

Brain cancers hardly need any description. They are either primary, arising from the brain cells, or metastatic, spreading to the brain from other organs. Some primary brain cancers, such as meningiomas and pituitary tumours, are, relatively, treatable. Many others are unfortunately ominously malignant. The most dreadful in this category is surely the spine-chilling glioblastoma multiforme. You may check out these previous blog posts for more on these tumuors: Calming the rage of brain tumours: hope for a dreaded cancerMaggots, viruses and lasers: some innovations for brain tumoursand Are steroids detrimental to survival in brain tumours?

Peripheral neuropathy

Peripheral neuropathy is ubiquitous in the neurology clinic. Neuropathy may result from reversible situations such as overindulgence in alcohol, uncontrolled diabetes, or Vitamin B12 deficiency. Neuropathy is often just a minor inconvenience when it manifests with sensory symptoms such as tingling and numbness. It may however be debilitating when it presents as limb paralysis, or complicated by major skeletal deformities. At the severe end of the spectrum of neuropathy are the hereditary forms such as Charcot Marie Tooth disease (CMT) and Familial amyloid polyneuropathy. Read more in these blog posts: The 52 variants of CMT… and their practical checklistsWhat’s looming at the frontline of peripheral neuropathy? and Will a pill really hold the cure for CMT?

Creutzfeldt Jakob disease (CJD)

CJD is the most iconic of the prion diseases. These disorders are as horrendous as they are enigmatic, defying categorisation as either infections or neurodegenerative diseases. More puzzling is their ability to be either hereditary and acquired. CJD exists in the classic or variant form, but both share a relentlessly rapid course, and a uniformly fatal end. You may read more in these previous blog posts titled Final day of ANA 2015- Prions center stage, and What are the links between Prion diseases and Parkinsonian disorders?

Dementia

Dementia is the scourge of longevity. Its name strikes terror because it insidiously colonises the cells that make us who we are. The most prominent dementia is Alzheimer’s disease, but it has equally dreadful companions such as Frontotemporal dementia (FTD) and Dementia with Lewy bodies (DLB). Read more on dementia in these blog posts: How bright is the future for Alzheimer’s disease?Alzheimer’s disease: a few curious things, and Alzheimers disease and its promising links with diabetes.

Dystonia

Dystonia marks its presence by distressing movements and painful postures. At its most benign, dystonia is only a twitch of the eyelid (blepharospasm) or a flicker of one side of the face (hemifacial spasm). At the extreme end, it produces continuous twisting and swirling motions, often defying all treatments. The causes of dystonia are legion, but the primary dystonias stand out by their hereditary transmission and marked severity. Read more on dystonia in these blog posts: Why does dystonia fascinate and challenge neurology? and Making sense of the dystonias: the practical checklists.

Huntington’s disease (HD)

Huntington’s disease is an iconic eponymous neurological disorder which is marked by the vicious triumvirate of chorea, dementia, and a positive family history. It is an awful condition, often driving its victims to suicide. It is a so-called trinucleotide repeat expansion disorder, implying that successive generations manifest the disease at an earlier age, and in more severe forms (genetic anticipation). You may read more on HD in the previous blog post titled What are the prospects of stamping out Huntington’s disease? 

Motor neurone disease (MND) 

Also known as Amyotrophic lateral sclerosis (ALS), MND is simply devastating. Recognising no anatomical boundaries, it ravages the central and peripheral nervous systems equally. MND creeps up on the neurones and causes early muscle twitching (fasciculations) and cramps. It then gradually devours the nerves resulting in muscle wasting, loss of speech, ineffectual breathing, and impaired swallowing. It is no wonder that one of the most read post on this blog is titled Is neurology research finally breaking the resolve of MND? Other previous blog posts on MND are The emerging links between depression and MNDWhat is the relationship of MND and cancer?Does diabetes protect from MND?, and MND and funeral directors-really?

Multiple sclerosis (MS)

Multiple sclerosis is a very common disease, and gets more common the further away you get from the equator. It is the subject of intense research because of the devastation it foists on predominantly young people. Many drugs now ameliorate, and even seem to halt the progression of, relapsing remitting MS (RRMS). This is however not the case with primary progressive MS (PPMS) which, until the introduction of ocrelizumab, defied all treatments. There are many contenders vying for the cause of MS, but the reason nerves in the central nervous system inexplicably lose their myelin sheaths remains elusive. You may read more on MS in these blog posts: The emerging progress from the world of MS , What are the remarkable drugs which have transformed the treatment of MS?, and Is low vitamin D a cause of multiple sclerosis?

Muscular dystrophy 

Muscular dystrophy is an umbrella term that covers a diverse range of inherited muscle diseases. The most devastating, on account of its early onset and unrelenting progression, is Duchenne muscular dystrophy (DMD). Adult neurologists will be more familiar with late onset muscular dystrophies such as Myotonic dystrophy and Facioscapulohumeral muscular dystrophy (FSHD). Read more on muscular dystrophy in these previous blog posts: How is neurology stamping out the anguish of Duchenne? and The A–Z of limb girdle muscular dystrophy (LGMD).

Rabies

Rabies, a rhabdovirus, is a zoonosis-it is transmitted to man by a wide range of animals such as dogs, bats, racoons, and skunks. It is the quintessential deadly neurological disease, popularised by the Steven King book and film, Cujo. Rabies manifests either as the encephalitic (furious) or the paralytic (dumb) forms. It wreaks havoc by causing irritability, hydrophobia (fear of water),  excessive sweating, altered consciousness, and inevitably death. Whilst there are vaccines to protect against rabies, a cure has eluded neuroscientists. This blog is yet to do justice to rabies but it is, at least, listed in the post titled What are the most iconic neurological disorders? But you could better by checking neurochecklists for details of the clinical features and management of rabies.

Spinal cord injury

Nothing is quite as heart-wrenching as the sudden loss of body function that results from spinal cord trauma. This often causes paralysis of both legs (paraplegia), or all four limbs (quadriplegia). This life-changing disorder is often accompanied by loss of control over bowel and bladder functions, and complications such as bed sores and painful spasms. You may read about the heroic efforts to treat spinal cord injury in the blog posts titled 6 innovations in the treatment of spinal cord injury and Head transplant, anyone?

Tetanus

Tetanus is an eminently preventable disease, now almost wiped out in developed countries by simple immunisation. It however continues its pillage and plunder in the developing world. It strikes young and old alike, often invading the body through innocuous wounds. Tetanus is caused by tetanospasmin and tetanolysin, the deadly toxins of the bacterium Clostridium tetani. The disease is classified as generalised, localised, cephalic, or neonatal tetanus. It is characterised by painful spasms which manifest as lockjaw (trismus), facial contortions (risus sardonicus), trunkal rigidity (opisthotonus), and vocal cord spasms (laryngospasm). The disease is awfully distressing and, when advanced, untreatable. It is a stain on the world that this avoidable disorder continuous to threaten a large number of its inhabitants. Check neurochecklists for more on the pathology, clinical features, and management of tetanus.

 

Light brain. Mario D’Amore on Flikr. https://www.flickr.com/photos/kidpixo/3470448888

As for all lists, this will surely be subject to debate, or perhaps some healthy controversy. Please leave a comment.

The emerging links between depression and MND

At first, it seemed like a single drop, but it is quickly turning into a trickle. The first inkling was a study of >1,700 people with motor neurone disease (MND) which was published in the journal Neurology titled Depression in amyotrophic lateral sclerosis. The authors found that depression is a very frequent diagnosis shortly before people are diagnosed with MND.

Von Vincent van Gogh - The Yorck Project: 10.000 Meisterwerke der Malerei. DVD-ROM, 2002. ISBN 3936122202. Distributed by DIRECTMEDIA Publishing GmbH., Gemeinfrei, Link
Von Vincent van Gogh – The Yorck Project: 10.000 Meisterwerke der Malerei. DVD-ROM, 2002. ISBN 3936122202. Distributed by DIRECTMEDIA Publishing GmbH., Gemeinfrei, Link

Surely a coincidence, I thought. A rogue finding, or even an understandable response to illness. My excuses were however debunked by another paper published soon after in the Annals of Neurology. Titled Psychiatric disorders prior to amyotrophic lateral sclerosis, the study found that depression may precede the diagnosis of MND by more than 5 years. The authors also report a high frequency of other psychiatric conditions preceding the diagnosis of MND, such as anxiety and psychosis

Depression. Nils Werner on Flikr. https://www.flickr.com/photos/130721398@N06/25363062843
Depression. Nils Werner on Flikr. https://www.flickr.com/photos/130721398@N06/25363062843

 

And just off the press is this report from Nature Communications titled Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. What do we make of this? Is this just the tip of the iceberg? Surely more studies are needed before any firm conclusions. Perhaps this may lead to some early biomarker that enables neurologists to stop the process of progression to full blown MND. Perhaps.

https://pixabay.com/en/sky-clouds-rays-of-sunshine-414199/
https://pixabay.com/en/sky-clouds-rays-of-sunshine-414199/

_________________________________________________________________________

neurochecklists-image

 

More activity on the fringes of gluten neurology

I have dabbled into gluten neurology before with my post gluten neurology-persisting and growing? 

https://pixabay.com/en/wheat-field-wheat-cereals-grain-640960/
https://pixabay.com/en/wheat-field-wheat-cereals-grain-640960/

Prophetic it seems, as I am here forced to revisit the topic because  I came across a few recent interesting reports on the neurology of gluten.

Gluten psychosis

By Vincent van Gogh - bgEuwDxel93-Pg at Google Cultural Institute, zoom level maximum, Public Domain, Link
By Vincent van GoghbgEuwDxel93-Pg at Google Cultural Institute, zoom level maximum, Public Domain, Link

Take this case report from Nutrients titled gluten psychosis: confirmation of a new clinical entity. The article comes with some good references that suggest it will do no harm to check anti-gliadin antibodies in people with unexplained psychosis. I do wonder how one case report would confirm an entity such as gluten psychosis, but there you are.

Gluten-induced visual impairment

By OpenStax College - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, Jun 19, 2013., CC BY 3.0, Link
By OpenStax College – Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, Jun 19, 2013., CC BY 3.0, Link

The second item is another case report published in Journal of Neurology titled severe, persistent visual impairment associated with occipital calcification and coeliac disease. The subject of the case report has long-standing coeliac disease and visual impairment. Her brain MRI scan showed calcifications in the visual area, evidence the authors claim, of celiac disease causing brain calcifications …..and thereby causing the patients visual loss. Is it just a case of correlation rather than causation? But there you are.

Gluten-induced motor neurone disease (MND)

Multiphoton microscopy of mouse motor neurons. ZEISS microscopy on Flikr. https://www.flickr.com/photos/zeissmicro/12174353194
Multiphoton microscopy of mouse motor neurons. ZEISS microscopy on Flikr. https://www.flickr.com/photos/zeissmicro/12174353194

The third report however pushes credulity to the limits. It is a review in Brain Blogger titled celiac disease and amyotrophic lateral sclerosis-is there a link? To its credit, the piece is heavily referenced; one such reference is from the American Journal of Neuroradiology  titled White Matter Lesions Suggestive of Amyotrophic Lateral Sclerosis Attributed to Celiac Disease. The thought is hard to bear, but there you are.

_________________________________________________________________________

By Photograph by Pdeitiker - Transferred from en.wikipedia to Commons., Public Domain, Link
By Photograph by Pdeitiker – Transferred from en.wikipedia to Commons., Public Domain, Link

What are your thoughts on the neurology of gluten? Please leave a comment

_________________________________________________________________________

neurochecklists-image

Resolving the treatment conundrums of CIDP

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is as complicated to articulate, as it is to manage. CIDP is the result of an inflammatory attack against myelin, the fatty layer that encases large nerves. The damage to the myelin sheath considerably slows down the speed at which nerves transmit electrical impulses. This leads to limb weakness, sensory impairment, and a host of other symptoms.

By Dr. Jana - http://docjana.com/#/saltatory ; https://www.patreon.com/posts/4374048, CC BY 4.0, Link
By Dr. Jana – http://docjana.com/#/saltatory ; https://www.patreon.com/posts/4374048, CC BY 4.0, Link

The diagnosis of CIDP is made on the basis of a clinical examination, nerve conduction studies (NCS), spinal fluid analysis, and countless blood tests. If this convoluted diagnostic process is hair-tearing, the treatment is even more perplexing.

By Gentaur - Gentaur, Public Domain, https://commons.wikimedia.org/w/index.php?curid=7222221
By Gentaur – Gentaur, Public Domain, https://commons.wikimedia.org/w/index.php?curid=7222221

There are 2 major CIDP treatment conundrums. The first is whether to start the treatment with steroids, or with intravenous immunoglobulins (IVIg). The second conundrum is what to do when the patient fails to respond to both of these first line CIDP treatments. Two recent papers have now come to the rescue, and they hope to settle, once and for all, these two major neurological puzzles.

1. Choosing steroids or IVIg as 1st line treatment

PRED SOV 5. Leo Reynolds on Flikr. https://www.flickr.com/photos/lwr/3300474346
PRED SOV 5. Leo Reynolds on Flikr. https://www.flickr.com/photos/lwr/3300474346

The first line treatment for CIDP is usually a toss-up between steroids and intravenous  immunoglobulins (IVIg). This is because neurologists had no way of telling who will do well on steroids, and who will respond to IVIg. Until now, that is. A recent report in the Journal of Neurology, Neurosurgery and Psychiatry (JNNP) set out to understand what patient characteristics predict response to IVIg. The authors studied >200 people with CIDP treated with IVIg, and reported that 1/4 did not respond. These IVIg non-responders had the following features:

  • The presence of pain
  • Association with other autoimmune diseases
  • A difference in the severity of weakness between the arms and the legs
  • The absence of anti-myelin associated glycoprotein (anti-MAG)

The authors conclude that people with CIDP who have the features above should start their treatment with steroids rather than IVIg. This surely beats tossing a coin.

2. Choosing rituximab as 1st line treatment

By Oguenther at de.wikipedia - Own work mit Jmol auf Basis RCSB PDB: 2OSL., Public Domain, Link
By Oguenther at de.wikipediaOwn work mit Jmol auf Basis RCSB PDB: 2OSL., Public Domain, Link

Choosing the 2nd line treatment of CIDP is comparatively easy; swap between IVIG and steroids, or go for plasma exchange (PE). Rituximab, a monoclonal antibody, is now also recognised as an effective treatment for CIDP. Conventional practice is to use this expensive treatment only when both IVIg and steroids fail. A recent paper however suggests that people with CIDP who also have IgG4 antibodies do not respond to either IVIg or steroids. On the bright side however, they do well when treated with Rituximab. The paper in the journal Neurology is titled Rituximab in treatment-resistant CIDP with antibodies against paranodal proteins. The authors studied only 4 patients, but the number was enough for them to suggest that patients with CIDP, who also have IgG4 antibodies, should be treated with Rituximab. Makes sense to me, if the alternative is predictable failure.

Flash light. Steve Johnson on Flikr. https://www.flickr.com/photos/artbystevejohnson/5202597852
Flash light. Steve Johnson on Flikr. https://www.flickr.com/photos/artbystevejohnson/5202597852

Now that some light has been shone on the treatment of CIDP, the next stage is to see how things work at the coal face. Do you have any feedback on CIDP treatment? Please leave a comment.

_________________________________________________________________________

neurochecklists-image